Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  xordc GIF version

Theorem xordc 1283
 Description: Two ways to express "exclusive or" between decidable propositions. Theorem *5.22 of [WhiteheadRussell] p. 124, but for decidable propositions. (Contributed by Jim Kingdon, 5-May-2018.)
Assertion
Ref Expression
xordc (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑)))))

Proof of Theorem xordc
StepHypRef Expression
1 excxor 1269 . . . 4 ((𝜑𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑𝜓)))
2 ancom 253 . . . . 5 ((¬ 𝜑𝜓) ↔ (𝜓 ∧ ¬ 𝜑))
32orbi2i 679 . . . 4 (((𝜑 ∧ ¬ 𝜓) ∨ (¬ 𝜑𝜓)) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑)))
41, 3bitri 173 . . 3 ((𝜑𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑)))
5 xornbidc 1282 . . . 4 (DECID 𝜑 → (DECID 𝜓 → ((𝜑𝜓) ↔ ¬ (𝜑𝜓))))
65imp 115 . . 3 ((DECID 𝜑DECID 𝜓) → ((𝜑𝜓) ↔ ¬ (𝜑𝜓)))
74, 6syl5rbbr 184 . 2 ((DECID 𝜑DECID 𝜓) → (¬ (𝜑𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑))))
87ex 108 1 (DECID 𝜑 → (DECID 𝜓 → (¬ (𝜑𝜓) ↔ ((𝜑 ∧ ¬ 𝜓) ∨ (𝜓 ∧ ¬ 𝜑)))))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 97   ↔ wb 98   ∨ wo 629  DECID wdc 742   ⊻ wxo 1266 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630 This theorem depends on definitions:  df-bi 110  df-dc 743  df-xor 1267 This theorem is referenced by:  dfbi3dc  1288  pm5.24dc  1289
 Copyright terms: Public domain W3C validator