Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcor Unicode version

Theorem dcor 843
 Description: A disjunction of two decidable propositions is decidable. (Contributed by Jim Kingdon, 21-Apr-2018.)
Assertion
Ref Expression
dcor DECID DECID DECID

Proof of Theorem dcor
StepHypRef Expression
1 df-dc 743 . 2 DECID
2 orc 633 . . . . . 6
32orcd 652 . . . . 5
4 df-dc 743 . . . . 5 DECID
53, 4sylibr 137 . . . 4 DECID
65a1d 22 . . 3 DECID DECID
7 df-dc 743 . . . . 5 DECID
8 olc 632 . . . . . . . . 9
98adantl 262 . . . . . . . 8
109orcd 652 . . . . . . 7
1110, 4sylibr 137 . . . . . 6 DECID
12 ioran 669 . . . . . . . . 9
1312biimpri 124 . . . . . . . 8
1413olcd 653 . . . . . . 7
1514, 4sylibr 137 . . . . . 6 DECID
1611, 15jaodan 710 . . . . 5 DECID
177, 16sylan2b 271 . . . 4 DECID DECID
1817ex 108 . . 3 DECID DECID
196, 18jaoi 636 . 2 DECID DECID
201, 19sylbi 114 1 DECID DECID DECID
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 97   wo 629  DECID wdc 742 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630 This theorem depends on definitions:  df-bi 110  df-dc 743 This theorem is referenced by:  pm4.55dc  846  pm3.12dc  865  pm3.13dc  866  dn1dc  867  eueq3dc  2715  distrlem4prl  6682  distrlem4pru  6683
 Copyright terms: Public domain W3C validator