Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > intnanrd | Unicode version |
Description: Introduction of conjunct inside of a contradiction. (Contributed by NM, 10-Jul-2005.) |
Ref | Expression |
---|---|
intnand.1 |
Ref | Expression |
---|---|
intnanrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | intnand.1 | . 2 | |
2 | simpl 102 | . 2 | |
3 | 1, 2 | nsyl 558 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 97 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-in1 544 ax-in2 545 |
This theorem is referenced by: dcan 842 bianfd 855 frecsuclem3 5990 xrrebnd 8732 fzpreddisj 8933 |
Copyright terms: Public domain | W3C validator |