Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reu3 | Unicode version |
Description: A way to express restricted uniqueness. (Contributed by NM, 24-Oct-2006.) |
Ref | Expression |
---|---|
reu3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reurex 2523 | . . 3 | |
2 | reu6 2730 | . . . 4 | |
3 | bi1 111 | . . . . . 6 | |
4 | 3 | ralimi 2384 | . . . . 5 |
5 | 4 | reximi 2416 | . . . 4 |
6 | 2, 5 | sylbi 114 | . . 3 |
7 | 1, 6 | jca 290 | . 2 |
8 | rexex 2368 | . . . 4 | |
9 | 8 | anim2i 324 | . . 3 |
10 | nfv 1421 | . . . . 5 | |
11 | 10 | eu3 1946 | . . . 4 |
12 | df-reu 2313 | . . . 4 | |
13 | df-rex 2312 | . . . . 5 | |
14 | df-ral 2311 | . . . . . . 7 | |
15 | impexp 250 | . . . . . . . 8 | |
16 | 15 | albii 1359 | . . . . . . 7 |
17 | 14, 16 | bitr4i 176 | . . . . . 6 |
18 | 17 | exbii 1496 | . . . . 5 |
19 | 13, 18 | anbi12i 433 | . . . 4 |
20 | 11, 12, 19 | 3bitr4i 201 | . . 3 |
21 | 9, 20 | sylibr 137 | . 2 |
22 | 7, 21 | impbii 117 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wb 98 wal 1241 wex 1381 wcel 1393 weu 1900 wral 2306 wrex 2307 wreu 2308 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-cleq 2033 df-clel 2036 df-ral 2311 df-rex 2312 df-reu 2313 df-rmo 2314 |
This theorem is referenced by: reu7 2736 bdreu 9975 |
Copyright terms: Public domain | W3C validator |