ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funun Unicode version

Theorem funun 4944
Description: The union of functions with disjoint domains is a function. Theorem 4.6 of [Monk1] p. 43. (Contributed by NM, 12-Aug-1994.)
Assertion
Ref Expression
funun  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  Fun  ( F  u.  G
) )

Proof of Theorem funun
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 funrel 4919 . . . . 5  |-  ( Fun 
F  ->  Rel  F )
2 funrel 4919 . . . . 5  |-  ( Fun 
G  ->  Rel  G )
31, 2anim12i 321 . . . 4  |-  ( ( Fun  F  /\  Fun  G )  ->  ( Rel  F  /\  Rel  G ) )
4 relun 4454 . . . 4  |-  ( Rel  ( F  u.  G
)  <->  ( Rel  F  /\  Rel  G ) )
53, 4sylibr 137 . . 3  |-  ( ( Fun  F  /\  Fun  G )  ->  Rel  ( F  u.  G ) )
65adantr 261 . 2  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  Rel  ( F  u.  G
) )
7 elun 3084 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  ( F  u.  G
)  <->  ( <. x ,  y >.  e.  F  \/  <. x ,  y
>.  e.  G ) )
8 elun 3084 . . . . . . . 8  |-  ( <.
x ,  z >.  e.  ( F  u.  G
)  <->  ( <. x ,  z >.  e.  F  \/  <. x ,  z
>.  e.  G ) )
97, 8anbi12i 433 . . . . . . 7  |-  ( (
<. x ,  y >.  e.  ( F  u.  G
)  /\  <. x ,  z >.  e.  ( F  u.  G )
)  <->  ( ( <.
x ,  y >.  e.  F  \/  <. x ,  y >.  e.  G
)  /\  ( <. x ,  z >.  e.  F  \/  <. x ,  z
>.  e.  G ) ) )
10 anddi 734 . . . . . . 7  |-  ( ( ( <. x ,  y
>.  e.  F  \/  <. x ,  y >.  e.  G
)  /\  ( <. x ,  z >.  e.  F  \/  <. x ,  z
>.  e.  G ) )  <-> 
( ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )  \/  (
( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) ) )
119, 10bitri 173 . . . . . 6  |-  ( (
<. x ,  y >.  e.  ( F  u.  G
)  /\  <. x ,  z >.  e.  ( F  u.  G )
)  <->  ( ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )  \/  (
( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) ) )
12 disj1 3270 . . . . . . . . . . . . 13  |-  ( ( dom  F  i^i  dom  G )  =  (/)  <->  A. x
( x  e.  dom  F  ->  -.  x  e.  dom  G ) )
1312biimpi 113 . . . . . . . . . . . 12  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  A. x
( x  e.  dom  F  ->  -.  x  e.  dom  G ) )
141319.21bi 1450 . . . . . . . . . . 11  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
x  e.  dom  F  ->  -.  x  e.  dom  G ) )
15 imnan 624 . . . . . . . . . . 11  |-  ( ( x  e.  dom  F  ->  -.  x  e.  dom  G )  <->  -.  ( x  e.  dom  F  /\  x  e.  dom  G ) )
1614, 15sylib 127 . . . . . . . . . 10  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  -.  ( x  e.  dom  F  /\  x  e.  dom  G ) )
17 vex 2560 . . . . . . . . . . . 12  |-  x  e. 
_V
18 vex 2560 . . . . . . . . . . . 12  |-  y  e. 
_V
1917, 18opeldm 4538 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  e.  F  ->  x  e. 
dom  F )
20 vex 2560 . . . . . . . . . . . 12  |-  z  e. 
_V
2117, 20opeldm 4538 . . . . . . . . . . 11  |-  ( <.
x ,  z >.  e.  G  ->  x  e. 
dom  G )
2219, 21anim12i 321 . . . . . . . . . 10  |-  ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
)  ->  ( x  e.  dom  F  /\  x  e.  dom  G ) )
2316, 22nsyl 558 . . . . . . . . 9  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  -.  ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  G
) )
24 orel2 645 . . . . . . . . 9  |-  ( -.  ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  G
)  ->  ( (
( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )  ->  ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
) ) )
2523, 24syl 14 . . . . . . . 8  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  \/  ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  G
) )  ->  ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
) ) )
2614con2d 554 . . . . . . . . . . 11  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
x  e.  dom  G  ->  -.  x  e.  dom  F ) )
27 imnan 624 . . . . . . . . . . 11  |-  ( ( x  e.  dom  G  ->  -.  x  e.  dom  F )  <->  -.  ( x  e.  dom  G  /\  x  e.  dom  F ) )
2826, 27sylib 127 . . . . . . . . . 10  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  -.  ( x  e.  dom  G  /\  x  e.  dom  F ) )
2917, 18opeldm 4538 . . . . . . . . . . 11  |-  ( <.
x ,  y >.  e.  G  ->  x  e. 
dom  G )
3017, 20opeldm 4538 . . . . . . . . . . 11  |-  ( <.
x ,  z >.  e.  F  ->  x  e. 
dom  F )
3129, 30anim12i 321 . . . . . . . . . 10  |-  ( (
<. x ,  y >.  e.  G  /\  <. x ,  z >.  e.  F
)  ->  ( x  e.  dom  G  /\  x  e.  dom  F ) )
3228, 31nsyl 558 . . . . . . . . 9  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  -.  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
) )
33 orel1 644 . . . . . . . . 9  |-  ( -.  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  ->  ( (
( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) )  ->  ( <. x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) )
3432, 33syl 14 . . . . . . . 8  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
( ( <. x ,  y >.  e.  G  /\  <. x ,  z
>.  e.  F )  \/  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  G
) )  ->  ( <. x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) )
3525, 34orim12d 700 . . . . . . 7  |-  ( ( dom  F  i^i  dom  G )  =  (/)  ->  (
( ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )  \/  (
( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) )  -> 
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  \/  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  G
) ) ) )
3635adantl 262 . . . . . 6  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( ( (
<. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  G
) )  \/  (
( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) ) )  -> 
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  \/  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  G
) ) ) )
3711, 36syl5bi 141 . . . . 5  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( <. x ,  y >.  e.  ( F  u.  G )  /\  <. x ,  z
>.  e.  ( F  u.  G ) )  -> 
( ( <. x ,  y >.  e.  F  /\  <. x ,  z
>.  e.  F )  \/  ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  G
) ) ) )
38 dffun4 4913 . . . . . . . . . 10  |-  ( Fun 
F  <->  ( Rel  F  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) ) )
3938simprbi 260 . . . . . . . . 9  |-  ( Fun 
F  ->  A. x A. y A. z ( ( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
403919.21bi 1450 . . . . . . . 8  |-  ( Fun 
F  ->  A. y A. z ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
414019.21bbi 1451 . . . . . . 7  |-  ( Fun 
F  ->  ( ( <. x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  ->  y  =  z ) )
42 dffun4 4913 . . . . . . . . . 10  |-  ( Fun 
G  <->  ( Rel  G  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
)  ->  y  =  z ) ) )
4342simprbi 260 . . . . . . . . 9  |-  ( Fun 
G  ->  A. x A. y A. z ( ( <. x ,  y
>.  e.  G  /\  <. x ,  z >.  e.  G
)  ->  y  =  z ) )
444319.21bi 1450 . . . . . . . 8  |-  ( Fun 
G  ->  A. y A. z ( ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
)  ->  y  =  z ) )
454419.21bbi 1451 . . . . . . 7  |-  ( Fun 
G  ->  ( ( <. x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
)  ->  y  =  z ) )
4641, 45jaao 639 . . . . . 6  |-  ( ( Fun  F  /\  Fun  G )  ->  ( (
( <. x ,  y
>.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) )  ->  y  =  z ) )
4746adantr 261 . . . . 5  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( ( <.
x ,  y >.  e.  F  /\  <. x ,  z >.  e.  F
)  \/  ( <.
x ,  y >.  e.  G  /\  <. x ,  z >.  e.  G
) )  ->  y  =  z ) )
4837, 47syld 40 . . . 4  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  -> 
( ( <. x ,  y >.  e.  ( F  u.  G )  /\  <. x ,  z
>.  e.  ( F  u.  G ) )  -> 
y  =  z ) )
4948alrimiv 1754 . . 3  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  A. z ( ( <.
x ,  y >.  e.  ( F  u.  G
)  /\  <. x ,  z >.  e.  ( F  u.  G )
)  ->  y  =  z ) )
5049alrimivv 1755 . 2  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  A. x A. y A. z ( ( <.
x ,  y >.  e.  ( F  u.  G
)  /\  <. x ,  z >.  e.  ( F  u.  G )
)  ->  y  =  z ) )
51 dffun4 4913 . 2  |-  ( Fun  ( F  u.  G
)  <->  ( Rel  ( F  u.  G )  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  ( F  u.  G
)  /\  <. x ,  z >.  e.  ( F  u.  G )
)  ->  y  =  z ) ) )
526, 50, 51sylanbrc 394 1  |-  ( ( ( Fun  F  /\  Fun  G )  /\  ( dom  F  i^i  dom  G
)  =  (/) )  ->  Fun  ( F  u.  G
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    \/ wo 629   A.wal 1241    = wceq 1243    e. wcel 1393    u. cun 2915    i^i cin 2916   (/)c0 3224   <.cop 3378   dom cdm 4345   Rel wrel 4350   Fun wfun 4896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-fun 4904
This theorem is referenced by:  funprg  4949  funtpg  4950  funtp  4952  fnun  5005  fvun1  5239
  Copyright terms: Public domain W3C validator