ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funprg Unicode version

Theorem funprg 4949
Description: A set of two pairs is a function if their first members are different. (Contributed by FL, 26-Jun-2011.)
Assertion
Ref Expression
funprg  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  Fun  {
<. A ,  C >. , 
<. B ,  D >. } )

Proof of Theorem funprg
StepHypRef Expression
1 simp1l 928 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  A  e.  V )
2 simp2l 930 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  C  e.  X )
3 funsng 4946 . . . 4  |-  ( ( A  e.  V  /\  C  e.  X )  ->  Fun  { <. A ,  C >. } )
41, 2, 3syl2anc 391 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  Fun  {
<. A ,  C >. } )
5 simp1r 929 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  B  e.  W )
6 simp2r 931 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  D  e.  Y )
7 funsng 4946 . . . 4  |-  ( ( B  e.  W  /\  D  e.  Y )  ->  Fun  { <. B ,  D >. } )
85, 6, 7syl2anc 391 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  Fun  {
<. B ,  D >. } )
9 dmsnopg 4792 . . . . . 6  |-  ( C  e.  X  ->  dom  {
<. A ,  C >. }  =  { A }
)
102, 9syl 14 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  dom  {
<. A ,  C >. }  =  { A }
)
11 dmsnopg 4792 . . . . . 6  |-  ( D  e.  Y  ->  dom  {
<. B ,  D >. }  =  { B }
)
126, 11syl 14 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  dom  {
<. B ,  D >. }  =  { B }
)
1310, 12ineq12d 3139 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  ( dom  { <. A ,  C >. }  i^i  dom  { <. B ,  D >. } )  =  ( { A }  i^i  { B } ) )
14 disjsn2 3433 . . . . 5  |-  ( A  =/=  B  ->  ( { A }  i^i  { B } )  =  (/) )
15143ad2ant3 927 . . . 4  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  ( { A }  i^i  { B } )  =  (/) )
1613, 15eqtrd 2072 . . 3  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  ( dom  { <. A ,  C >. }  i^i  dom  { <. B ,  D >. } )  =  (/) )
17 funun 4944 . . 3  |-  ( ( ( Fun  { <. A ,  C >. }  /\  Fun  { <. B ,  D >. } )  /\  ( dom  { <. A ,  C >. }  i^i  dom  { <. B ,  D >. } )  =  (/) )  ->  Fun  ( { <. A ,  C >. }  u.  { <. B ,  D >. } ) )
184, 8, 16, 17syl21anc 1134 . 2  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  Fun  ( { <. A ,  C >. }  u.  { <. B ,  D >. } ) )
19 df-pr 3382 . . 3  |-  { <. A ,  C >. ,  <. B ,  D >. }  =  ( { <. A ,  C >. }  u.  { <. B ,  D >. } )
2019funeqi 4922 . 2  |-  ( Fun 
{ <. A ,  C >. ,  <. B ,  D >. }  <->  Fun  ( { <. A ,  C >. }  u.  {
<. B ,  D >. } ) )
2118, 20sylibr 137 1  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( C  e.  X  /\  D  e.  Y )  /\  A  =/=  B )  ->  Fun  {
<. A ,  C >. , 
<. B ,  D >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    /\ w3a 885    = wceq 1243    e. wcel 1393    =/= wne 2204    u. cun 2915    i^i cin 2916   (/)c0 3224   {csn 3375   {cpr 3376   <.cop 3378   dom cdm 4345   Fun wfun 4896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-fun 4904
This theorem is referenced by:  funtpg  4950  funpr  4951  fnprg  4954
  Copyright terms: Public domain W3C validator