ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wessep Unicode version

Theorem wessep 4302
Description: A subset of a set well-ordered by set membership is well-ordered by set membership. (Contributed by Jim Kingdon, 30-Sep-2021.)
Assertion
Ref Expression
wessep  |-  ( (  _E  We  A  /\  B  C_  A )  ->  _E  We  B )

Proof of Theorem wessep
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 2939 . . . . . . 7  |-  ( B 
C_  A  ->  (
x  e.  B  ->  x  e.  A )
)
2 ssel 2939 . . . . . . 7  |-  ( B 
C_  A  ->  (
y  e.  B  -> 
y  e.  A ) )
3 ssel 2939 . . . . . . 7  |-  ( B 
C_  A  ->  (
z  e.  B  -> 
z  e.  A ) )
41, 2, 33anim123d 1214 . . . . . 6  |-  ( B 
C_  A  ->  (
( x  e.  B  /\  y  e.  B  /\  z  e.  B
)  ->  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) ) )
54adantl 262 . . . . 5  |-  ( (  _E  We  A  /\  B  C_  A )  -> 
( ( x  e.  B  /\  y  e.  B  /\  z  e.  B )  ->  (
x  e.  A  /\  y  e.  A  /\  z  e.  A )
) )
65imdistani 419 . . . 4  |-  ( ( (  _E  We  A  /\  B  C_  A )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( (  _E  We  A  /\  B  C_  A
)  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) ) )
7 wetrep 4097 . . . . . 6  |-  ( (  _E  We  A  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A
) )  ->  (
( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
87adantlr 446 . . . . 5  |-  ( ( (  _E  We  A  /\  B  C_  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  -> 
( ( x  e.  y  /\  y  e.  z )  ->  x  e.  z ) )
9 epel 4029 . . . . . 6  |-  ( x  _E  y  <->  x  e.  y )
10 epel 4029 . . . . . 6  |-  ( y  _E  z  <->  y  e.  z )
119, 10anbi12i 433 . . . . 5  |-  ( ( x  _E  y  /\  y  _E  z )  <->  ( x  e.  y  /\  y  e.  z )
)
12 epel 4029 . . . . 5  |-  ( x  _E  z  <->  x  e.  z )
138, 11, 123imtr4g 194 . . . 4  |-  ( ( (  _E  We  A  /\  B  C_  A )  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  -> 
( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
146, 13syl 14 . . 3  |-  ( ( (  _E  We  A  /\  B  C_  A )  /\  ( x  e.  B  /\  y  e.  B  /\  z  e.  B ) )  -> 
( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
1514ralrimivvva 2402 . 2  |-  ( (  _E  We  A  /\  B  C_  A )  ->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( ( x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
16 zfregfr 4298 . . 3  |-  _E  Fr  B
17 df-wetr 4071 . . 3  |-  (  _E  We  B  <->  (  _E  Fr  B  /\  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) ) )
1816, 17mpbiran 847 . 2  |-  (  _E  We  B  <->  A. x  e.  B  A. y  e.  B  A. z  e.  B  ( (
x  _E  y  /\  y  _E  z )  ->  x  _E  z ) )
1915, 18sylibr 137 1  |-  ( (  _E  We  A  /\  B  C_  A )  ->  _E  We  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    /\ w3a 885    e. wcel 1393   A.wral 2306    C_ wss 2917   class class class wbr 3764    _E cep 4024    Fr wfr 4065    We wwe 4067
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-eprel 4026  df-frfor 4068  df-frind 4069  df-wetr 4071
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator