![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3imtr4g | Unicode version |
Description: More general version of 3imtr4i 190. Useful for converting definitions in a formula. (Contributed by NM, 20-May-1996.) (Proof shortened by Wolf Lammen, 20-Dec-2013.) |
Ref | Expression |
---|---|
3imtr4g.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3imtr4g.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
3imtr4g.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3imtr4g |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3imtr4g.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 3imtr4g.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl5bi 141 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3imtr4g.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | syl6ibr 151 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 |
This theorem depends on definitions: df-bi 110 |
This theorem is referenced by: 3anim123d 1214 3orim123d 1215 hbbid 1467 spsbim 1724 moim 1964 moimv 1966 2euswapdc 1991 ralim 2380 ralimdaa 2386 ralimdv2 2389 rexim 2413 reximdv2 2418 rmoim 2740 ssel 2939 sstr2 2952 sscon 3077 ssdif 3078 unss1 3112 ssrin 3162 prel12 3542 uniss 3601 ssuni 3602 intss 3636 intssunim 3637 iunss1 3668 iinss1 3669 ss2iun 3672 disjss2 3748 disjss1 3751 ssbrd 3805 sspwb 3952 poss 4035 pofun 4049 soss 4051 sess1 4074 sess2 4075 ordwe 4300 wessep 4302 peano2 4318 finds 4323 finds2 4324 relss 4427 ssrel 4428 ssrel2 4430 ssrelrel 4440 xpsspw 4450 relop 4486 cnvss 4508 dmss 4534 dmcosseq 4603 funss 4920 imadif 4979 imain 4981 fss 5054 fun 5063 brprcneu 5171 isores3 5455 isopolem 5461 isosolem 5463 tposfn2 5881 tposfo2 5882 tposf1o2 5885 smores 5907 iinerm 6178 xpdom2 6305 recexprlemlol 6724 recexprlemupu 6726 axpre-ltwlin 6957 axpre-apti 6959 nnindnn 6967 nnind 7930 uzind 8349 cau3lem 9710 |
Copyright terms: Public domain | W3C validator |