ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funss Unicode version

Theorem funss 4920
Description: Subclass theorem for function predicate. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Mario Carneiro, 24-Jun-2014.)
Assertion
Ref Expression
funss  |-  ( A 
C_  B  ->  ( Fun  B  ->  Fun  A ) )

Proof of Theorem funss
StepHypRef Expression
1 relss 4427 . . 3  |-  ( A 
C_  B  ->  ( Rel  B  ->  Rel  A ) )
2 coss1 4491 . . . . 5  |-  ( A 
C_  B  ->  ( A  o.  `' A
)  C_  ( B  o.  `' A ) )
3 cnvss 4508 . . . . . 6  |-  ( A 
C_  B  ->  `' A  C_  `' B )
4 coss2 4492 . . . . . 6  |-  ( `' A  C_  `' B  ->  ( B  o.  `' A )  C_  ( B  o.  `' B
) )
53, 4syl 14 . . . . 5  |-  ( A 
C_  B  ->  ( B  o.  `' A
)  C_  ( B  o.  `' B ) )
62, 5sstrd 2955 . . . 4  |-  ( A 
C_  B  ->  ( A  o.  `' A
)  C_  ( B  o.  `' B ) )
7 sstr2 2952 . . . 4  |-  ( ( A  o.  `' A
)  C_  ( B  o.  `' B )  ->  (
( B  o.  `' B )  C_  _I  ->  ( A  o.  `' A )  C_  _I  ) )
86, 7syl 14 . . 3  |-  ( A 
C_  B  ->  (
( B  o.  `' B )  C_  _I  ->  ( A  o.  `' A )  C_  _I  ) )
91, 8anim12d 318 . 2  |-  ( A 
C_  B  ->  (
( Rel  B  /\  ( B  o.  `' B )  C_  _I  )  ->  ( Rel  A  /\  ( A  o.  `' A )  C_  _I  ) ) )
10 df-fun 4904 . 2  |-  ( Fun 
B  <->  ( Rel  B  /\  ( B  o.  `' B )  C_  _I  ) )
11 df-fun 4904 . 2  |-  ( Fun 
A  <->  ( Rel  A  /\  ( A  o.  `' A )  C_  _I  ) )
129, 10, 113imtr4g 194 1  |-  ( A 
C_  B  ->  ( Fun  B  ->  Fun  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    C_ wss 2917    _I cid 4025   `'ccnv 4344    o. ccom 4349   Rel wrel 4350   Fun wfun 4896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-in 2924  df-ss 2931  df-br 3765  df-opab 3819  df-rel 4352  df-cnv 4353  df-co 4354  df-fun 4904
This theorem is referenced by:  funeq  4921  funopab4  4937  funres  4941  fun0  4957  funcnvcnv  4958  funin  4970  funres11  4971  foimacnv  5144  tfrlemibfn  5942
  Copyright terms: Public domain W3C validator