Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  moimv Structured version   Unicode version

Theorem moimv 1963
 Description: Move antecedent outside of "at most one." (Contributed by NM, 28-Jul-1995.)
Assertion
Ref Expression
moimv
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem moimv
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ax-1 5 . . . . . . 7
21a1i 9 . . . . . 6
32sbimi 1644 . . . . . . 7
4 nfv 1418 . . . . . . . 8
54sbf 1657 . . . . . . 7
6 sbim 1824 . . . . . . 7
73, 5, 63imtr3i 189 . . . . . 6
82, 7anim12d 318 . . . . 5
98imim1d 69 . . . 4
1092alimdv 1758 . . 3
11 ax-17 1416 . . . 4
1211mo3h 1950 . . 3
13 ax-17 1416 . . . 4
1413mo3h 1950 . . 3
1510, 12, 143imtr4g 194 . 2
1615com12 27 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97  wal 1240  wsb 1642  wmo 1898 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425 This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator