ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2euswapdc Unicode version

Theorem 2euswapdc 1991
Description: A condition allowing swap of uniqueness and existential quantifiers. (Contributed by Jim Kingdon, 7-Jul-2018.)
Assertion
Ref Expression
2euswapdc  |-  (DECID  E. x E. y ph  ->  ( A. x E* y ph  ->  ( E! x E. y ph  ->  E! y E. x ph ) ) )

Proof of Theorem 2euswapdc
StepHypRef Expression
1 excomim 1553 . . . . 5  |-  ( E. x E. y ph  ->  E. y E. x ph )
21a1i 9 . . . 4  |-  ( (DECID  E. x E. y ph  /\ 
A. x E* y ph )  ->  ( E. x E. y ph  ->  E. y E. x ph ) )
3 2moswapdc 1990 . . . . 5  |-  (DECID  E. x E. y ph  ->  ( A. x E* y ph  ->  ( E* x E. y ph  ->  E* y E. x ph ) ) )
43imp 115 . . . 4  |-  ( (DECID  E. x E. y ph  /\ 
A. x E* y ph )  ->  ( E* x E. y ph  ->  E* y E. x ph ) )
52, 4anim12d 318 . . 3  |-  ( (DECID  E. x E. y ph  /\ 
A. x E* y ph )  ->  ( ( E. x E. y ph  /\  E* x E. y ph )  ->  ( E. y E. x ph  /\ 
E* y E. x ph ) ) )
6 eu5 1947 . . 3  |-  ( E! x E. y ph  <->  ( E. x E. y ph  /\  E* x E. y ph ) )
7 eu5 1947 . . 3  |-  ( E! y E. x ph  <->  ( E. y E. x ph  /\  E* y E. x ph ) )
85, 6, 73imtr4g 194 . 2  |-  ( (DECID  E. x E. y ph  /\ 
A. x E* y ph )  ->  ( E! x E. y ph  ->  E! y E. x ph ) )
98ex 108 1  |-  (DECID  E. x E. y ph  ->  ( A. x E* y ph  ->  ( E! x E. y ph  ->  E! y E. x ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97  DECID wdc 742   A.wal 1241   E.wex 1381   E!weu 1900   E*wmo 1901
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428
This theorem depends on definitions:  df-bi 110  df-dc 743  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904
This theorem is referenced by:  euxfr2dc  2726  2reuswapdc  2743
  Copyright terms: Public domain W3C validator