ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvss Structured version   Unicode version

Theorem cnvss 4451
Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
cnvss 
C_  `'  C_  `'

Proof of Theorem cnvss
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssel 2933 . . . 4 
C_  <. ,  >.  <. ,  >.
2 df-br 3756 . . . 4  <. ,  >.
3 df-br 3756 . . . 4  <. ,  >.
41, 2, 33imtr4g 194 . . 3 
C_
54ssopab2dv 4006 . 2 
C_  { <. ,  >.  |  }  C_ 
{ <. , 
>.  |  }
6 df-cnv 4296 . 2  `'  { <. , 
>.  |  }
7 df-cnv 4296 . 2  `'  { <. , 
>.  |  }
85, 6, 73sstr4g 2980 1 
C_  `'  C_  `'
Colors of variables: wff set class
Syntax hints:   wi 4   wcel 1390    C_ wss 2911   <.cop 3370   class class class wbr 3755   {copab 3808   `'ccnv 4287
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-in 2918  df-ss 2925  df-br 3756  df-opab 3810  df-cnv 4296
This theorem is referenced by:  cnveq  4452  rnss  4507  relcnvtr  4783  funss  4863  funcnvuni  4911  funres11  4914  funcnvres  4915  foimacnv  5087  tposss  5802
  Copyright terms: Public domain W3C validator