Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2iun Unicode version

Theorem ss2iun 3672
 Description: Subclass theorem for indexed union. (Contributed by NM, 26-Nov-2003.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
ss2iun

Proof of Theorem ss2iun
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ssel 2939 . . . . 5
21ralimi 2384 . . . 4
3 rexim 2413 . . . 4
42, 3syl 14 . . 3
5 eliun 3661 . . 3
6 eliun 3661 . . 3
74, 5, 63imtr4g 194 . 2
87ssrdv 2951 1
 Colors of variables: wff set class Syntax hints:   wi 4   wcel 1393  wral 2306  wrex 2307   wss 2917  ciun 3657 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-in 2924  df-ss 2931  df-iun 3659 This theorem is referenced by:  iuneq2  3673
 Copyright terms: Public domain W3C validator