Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fun11 | Unicode version |
Description: Two ways of stating that is one-to-one (but not necessarily a function). Each side is equivalent to Definition 6.4(3) of [TakeutiZaring] p. 24, who use the notation "Un2 (A)" for one-to-one (but not necessarily a function). (Contributed by NM, 17-Jan-2006.) |
Ref | Expression |
---|---|
fun11 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi2 368 | . . . . . . . 8 | |
2 | 1 | imbi2i 215 | . . . . . . 7 |
3 | pm4.76 536 | . . . . . . 7 | |
4 | bi2.04 237 | . . . . . . . 8 | |
5 | bi2.04 237 | . . . . . . . 8 | |
6 | 4, 5 | anbi12i 433 | . . . . . . 7 |
7 | 2, 3, 6 | 3bitr2i 197 | . . . . . 6 |
8 | 7 | 2albii 1360 | . . . . 5 |
9 | 19.26-2 1371 | . . . . 5 | |
10 | alcom 1367 | . . . . . . 7 | |
11 | nfv 1421 | . . . . . . . . 9 | |
12 | breq1 3767 | . . . . . . . . . . 11 | |
13 | 12 | anbi1d 438 | . . . . . . . . . 10 |
14 | 13 | imbi1d 220 | . . . . . . . . 9 |
15 | 11, 14 | equsal 1615 | . . . . . . . 8 |
16 | 15 | albii 1359 | . . . . . . 7 |
17 | 10, 16 | bitri 173 | . . . . . 6 |
18 | nfv 1421 | . . . . . . . 8 | |
19 | breq2 3768 | . . . . . . . . . 10 | |
20 | 19 | anbi1d 438 | . . . . . . . . 9 |
21 | 20 | imbi1d 220 | . . . . . . . 8 |
22 | 18, 21 | equsal 1615 | . . . . . . 7 |
23 | 22 | albii 1359 | . . . . . 6 |
24 | 17, 23 | anbi12i 433 | . . . . 5 |
25 | 8, 9, 24 | 3bitri 195 | . . . 4 |
26 | 25 | 2albii 1360 | . . 3 |
27 | 19.26-2 1371 | . . 3 | |
28 | 26, 27 | bitr2i 174 | . 2 |
29 | fun2cnv 4963 | . . . 4 | |
30 | breq2 3768 | . . . . . 6 | |
31 | 30 | mo4 1961 | . . . . 5 |
32 | 31 | albii 1359 | . . . 4 |
33 | alcom 1367 | . . . . 5 | |
34 | 33 | albii 1359 | . . . 4 |
35 | 29, 32, 34 | 3bitri 195 | . . 3 |
36 | funcnv2 4959 | . . . 4 | |
37 | breq1 3767 | . . . . . 6 | |
38 | 37 | mo4 1961 | . . . . 5 |
39 | 38 | albii 1359 | . . . 4 |
40 | alcom 1367 | . . . . . 6 | |
41 | 40 | albii 1359 | . . . . 5 |
42 | alcom 1367 | . . . . 5 | |
43 | 41, 42 | bitri 173 | . . . 4 |
44 | 36, 39, 43 | 3bitri 195 | . . 3 |
45 | 35, 44 | anbi12i 433 | . 2 |
46 | alrot4 1375 | . 2 | |
47 | 28, 45, 46 | 3bitr4i 201 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wb 98 wal 1241 wmo 1901 class class class wbr 3764 ccnv 4344 wfun 4896 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-id 4030 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-fun 4904 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |