ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fncnv Unicode version

Theorem fncnv 4965
Description: Single-rootedness (see funcnv 4960) of a class cut down by a cross product. (Contributed by NM, 5-Mar-2007.)
Assertion
Ref Expression
fncnv  |-  ( `' ( R  i^i  ( A  X.  B ) )  Fn  B  <->  A. y  e.  B  E! x  e.  A  x R
y )
Distinct variable groups:    x, y, A   
x, B, y    x, R, y

Proof of Theorem fncnv
StepHypRef Expression
1 df-fn 4905 . 2  |-  ( `' ( R  i^i  ( A  X.  B ) )  Fn  B  <->  ( Fun  `' ( R  i^i  ( A  X.  B ) )  /\  dom  `' ( R  i^i  ( A  X.  B ) )  =  B ) )
2 df-rn 4356 . . . 4  |-  ran  ( R  i^i  ( A  X.  B ) )  =  dom  `' ( R  i^i  ( A  X.  B ) )
32eqeq1i 2047 . . 3  |-  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  <->  dom  `' ( R  i^i  ( A  X.  B ) )  =  B )
43anbi2i 430 . 2  |-  ( ( Fun  `' ( R  i^i  ( A  X.  B ) )  /\  ran  ( R  i^i  ( A  X.  B ) )  =  B )  <->  ( Fun  `' ( R  i^i  ( A  X.  B ) )  /\  dom  `' ( R  i^i  ( A  X.  B ) )  =  B ) )
5 rninxp 4764 . . . . 5  |-  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  <->  A. y  e.  B  E. x  e.  A  x R
y )
65anbi1i 431 . . . 4  |-  ( ( ran  ( R  i^i  ( A  X.  B
) )  =  B  /\  A. y  e.  B  E* x  e.  A  x R y )  <->  ( A. y  e.  B  E. x  e.  A  x R
y  /\  A. y  e.  B  E* x  e.  A  x R
y ) )
7 funcnv 4960 . . . . . 6  |-  ( Fun  `' ( R  i^i  ( A  X.  B
) )  <->  A. y  e.  ran  ( R  i^i  ( A  X.  B
) ) E* x  x ( R  i^i  ( A  X.  B
) ) y )
8 raleq 2505 . . . . . . 7  |-  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  ->  ( A. y  e.  ran  ( R  i^i  ( A  X.  B ) ) E* x  x ( R  i^i  ( A  X.  B ) ) y  <->  A. y  e.  B  E* x  x ( R  i^i  ( A  X.  B ) ) y ) )
9 biimt 230 . . . . . . . . 9  |-  ( y  e.  B  ->  ( E* x  e.  A  x R y  <->  ( y  e.  B  ->  E* x  e.  A  x R
y ) ) )
10 moanimv 1975 . . . . . . . . . 10  |-  ( E* x ( y  e.  B  /\  ( x  e.  A  /\  x R y ) )  <-> 
( y  e.  B  ->  E* x ( x  e.  A  /\  x R y ) ) )
11 brinxp2 4407 . . . . . . . . . . . 12  |-  ( x ( R  i^i  ( A  X.  B ) ) y  <->  ( x  e.  A  /\  y  e.  B  /\  x R y ) )
12 3anan12 897 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  y  e.  B  /\  x R y )  <->  ( y  e.  B  /\  (
x  e.  A  /\  x R y ) ) )
1311, 12bitri 173 . . . . . . . . . . 11  |-  ( x ( R  i^i  ( A  X.  B ) ) y  <->  ( y  e.  B  /\  ( x  e.  A  /\  x R y ) ) )
1413mobii 1937 . . . . . . . . . 10  |-  ( E* x  x ( R  i^i  ( A  X.  B ) ) y  <->  E* x ( y  e.  B  /\  ( x  e.  A  /\  x R y ) ) )
15 df-rmo 2314 . . . . . . . . . . 11  |-  ( E* x  e.  A  x R y  <->  E* x
( x  e.  A  /\  x R y ) )
1615imbi2i 215 . . . . . . . . . 10  |-  ( ( y  e.  B  ->  E* x  e.  A  x R y )  <->  ( y  e.  B  ->  E* x
( x  e.  A  /\  x R y ) ) )
1710, 14, 163bitr4i 201 . . . . . . . . 9  |-  ( E* x  x ( R  i^i  ( A  X.  B ) ) y  <-> 
( y  e.  B  ->  E* x  e.  A  x R y ) )
189, 17syl6rbbr 188 . . . . . . . 8  |-  ( y  e.  B  ->  ( E* x  x ( R  i^i  ( A  X.  B ) ) y  <->  E* x  e.  A  x R y ) )
1918ralbiia 2338 . . . . . . 7  |-  ( A. y  e.  B  E* x  x ( R  i^i  ( A  X.  B
) ) y  <->  A. y  e.  B  E* x  e.  A  x R
y )
208, 19syl6bb 185 . . . . . 6  |-  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  ->  ( A. y  e.  ran  ( R  i^i  ( A  X.  B ) ) E* x  x ( R  i^i  ( A  X.  B ) ) y  <->  A. y  e.  B  E* x  e.  A  x R y ) )
217, 20syl5bb 181 . . . . 5  |-  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  ->  ( Fun  `' ( R  i^i  ( A  X.  B
) )  <->  A. y  e.  B  E* x  e.  A  x R
y ) )
2221pm5.32i 427 . . . 4  |-  ( ( ran  ( R  i^i  ( A  X.  B
) )  =  B  /\  Fun  `' ( R  i^i  ( A  X.  B ) ) )  <->  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  /\  A. y  e.  B  E* x  e.  A  x R
y ) )
23 r19.26 2441 . . . 4  |-  ( A. y  e.  B  ( E. x  e.  A  x R y  /\  E* x  e.  A  x R y )  <->  ( A. y  e.  B  E. x  e.  A  x R y  /\  A. y  e.  B  E* x  e.  A  x R y ) )
246, 22, 233bitr4i 201 . . 3  |-  ( ( ran  ( R  i^i  ( A  X.  B
) )  =  B  /\  Fun  `' ( R  i^i  ( A  X.  B ) ) )  <->  A. y  e.  B  ( E. x  e.  A  x R y  /\  E* x  e.  A  x R y ) )
25 ancom 253 . . 3  |-  ( ( Fun  `' ( R  i^i  ( A  X.  B ) )  /\  ran  ( R  i^i  ( A  X.  B ) )  =  B )  <->  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  /\  Fun  `' ( R  i^i  ( A  X.  B ) ) ) )
26 reu5 2522 . . . 4  |-  ( E! x  e.  A  x R y  <->  ( E. x  e.  A  x R y  /\  E* x  e.  A  x R y ) )
2726ralbii 2330 . . 3  |-  ( A. y  e.  B  E! x  e.  A  x R y  <->  A. y  e.  B  ( E. x  e.  A  x R y  /\  E* x  e.  A  x R y ) )
2824, 25, 273bitr4i 201 . 2  |-  ( ( Fun  `' ( R  i^i  ( A  X.  B ) )  /\  ran  ( R  i^i  ( A  X.  B ) )  =  B )  <->  A. y  e.  B  E! x  e.  A  x R
y )
291, 4, 283bitr2i 197 1  |-  ( `' ( R  i^i  ( A  X.  B ) )  Fn  B  <->  A. y  e.  B  E! x  e.  A  x R
y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    /\ w3a 885    = wceq 1243    e. wcel 1393   E*wmo 1901   A.wral 2306   E.wrex 2307   E!wreu 2308   E*wrmo 2309    i^i cin 2916   class class class wbr 3764    X. cxp 4343   `'ccnv 4344   dom cdm 4345   ran crn 4346   Fun wfun 4896    Fn wfn 4897
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-fun 4904  df-fn 4905
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator