ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reu5 Unicode version

Theorem reu5 2516
Description: Restricted uniqueness in terms of "at most one." (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
reu5

Proof of Theorem reu5
StepHypRef Expression
1 eu5 1944 . 2
2 df-reu 2307 . 2
3 df-rex 2306 . . 3
4 df-rmo 2308 . . 3
53, 4anbi12i 433 . 2
61, 2, 53bitr4i 201 1
Colors of variables: wff set class
Syntax hints:   wa 97   wb 98  wex 1378   wcel 1390  weu 1897  wmo 1898  wrex 2301  wreu 2302  wrmo 2303
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425
This theorem depends on definitions:  df-bi 110  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-rex 2306  df-reu 2307  df-rmo 2308
This theorem is referenced by:  reurex  2517  reurmo  2518  reu4  2729  reueq  2732  reusv1  4156  fncnv  4908  moriotass  5439
  Copyright terms: Public domain W3C validator