Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  reu5 Unicode version

Theorem reu5 2522
 Description: Restricted uniqueness in terms of "at most one." (Contributed by NM, 23-May-1999.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
reu5

Proof of Theorem reu5
StepHypRef Expression
1 eu5 1947 . 2
2 df-reu 2313 . 2
3 df-rex 2312 . . 3
4 df-rmo 2314 . . 3
53, 4anbi12i 433 . 2
61, 2, 53bitr4i 201 1
 Colors of variables: wff set class Syntax hints:   wa 97   wb 98  wex 1381   wcel 1393  weu 1900  wmo 1901  wrex 2307  wreu 2308  wrmo 2309 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-rex 2312  df-reu 2313  df-rmo 2314 This theorem is referenced by:  reurex  2523  reurmo  2524  reu4  2735  reueq  2738  reusv1  4190  fncnv  4965  moriotass  5496  lteupri  6715  elrealeu  6906  rereceu  6963  qbtwnz  9106  rersqreu  9626
 Copyright terms: Public domain W3C validator