ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elrealeu Unicode version

Theorem elrealeu 6906
Description: The real number mapping in elreal 6905 is unique. (Contributed by Jim Kingdon, 11-Jul-2021.)
Assertion
Ref Expression
elrealeu  |-  ( A  e.  RR  <->  E! x  e.  R.  <. x ,  0R >.  =  A )
Distinct variable group:    x, A

Proof of Theorem elrealeu
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elreal 6905 . . . 4  |-  ( A  e.  RR  <->  E. x  e.  R.  <. x ,  0R >.  =  A )
21biimpi 113 . . 3  |-  ( A  e.  RR  ->  E. x  e.  R.  <. x ,  0R >.  =  A )
3 eqtr3 2059 . . . . . . . 8  |-  ( (
<. x ,  0R >.  =  A  /\  <. y ,  0R >.  =  A
)  ->  <. x ,  0R >.  =  <. y ,  0R >. )
4 0r 6835 . . . . . . . . . 10  |-  0R  e.  R.
5 opthg 3975 . . . . . . . . . 10  |-  ( ( x  e.  R.  /\  0R  e.  R. )  -> 
( <. x ,  0R >.  =  <. y ,  0R >.  <-> 
( x  =  y  /\  0R  =  0R ) ) )
64, 5mpan2 401 . . . . . . . . 9  |-  ( x  e.  R.  ->  ( <. x ,  0R >.  = 
<. y ,  0R >.  <->  (
x  =  y  /\  0R  =  0R )
) )
76ad2antlr 458 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  x  e.  R. )  /\  y  e.  R. )  ->  ( <. x ,  0R >.  =  <. y ,  0R >.  <->  ( x  =  y  /\  0R  =  0R ) ) )
83, 7syl5ib 143 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  x  e.  R. )  /\  y  e.  R. )  ->  ( ( <.
x ,  0R >.  =  A  /\  <. y ,  0R >.  =  A
)  ->  ( x  =  y  /\  0R  =  0R ) ) )
9 simpl 102 . . . . . . 7  |-  ( ( x  =  y  /\  0R  =  0R )  ->  x  =  y )
108, 9syl6 29 . . . . . 6  |-  ( ( ( A  e.  RR  /\  x  e.  R. )  /\  y  e.  R. )  ->  ( ( <.
x ,  0R >.  =  A  /\  <. y ,  0R >.  =  A
)  ->  x  =  y ) )
1110ralrimiva 2392 . . . . 5  |-  ( ( A  e.  RR  /\  x  e.  R. )  ->  A. y  e.  R.  ( ( <. x ,  0R >.  =  A  /\  <. y ,  0R >.  =  A )  ->  x  =  y )
)
1211ralrimiva 2392 . . . 4  |-  ( A  e.  RR  ->  A. x  e.  R.  A. y  e. 
R.  ( ( <.
x ,  0R >.  =  A  /\  <. y ,  0R >.  =  A
)  ->  x  =  y ) )
13 opeq1 3549 . . . . . 6  |-  ( x  =  y  ->  <. x ,  0R >.  =  <. y ,  0R >. )
1413eqeq1d 2048 . . . . 5  |-  ( x  =  y  ->  ( <. x ,  0R >.  =  A  <->  <. y ,  0R >.  =  A ) )
1514rmo4 2734 . . . 4  |-  ( E* x  e.  R.  <. x ,  0R >.  =  A  <->  A. x  e.  R.  A. y  e.  R.  (
( <. x ,  0R >.  =  A  /\  <. y ,  0R >.  =  A )  ->  x  =  y ) )
1612, 15sylibr 137 . . 3  |-  ( A  e.  RR  ->  E* x  e.  R.  <. x ,  0R >.  =  A
)
17 reu5 2522 . . 3  |-  ( E! x  e.  R.  <. x ,  0R >.  =  A  <-> 
( E. x  e. 
R.  <. x ,  0R >.  =  A  /\  E* x  e.  R.  <. x ,  0R >.  =  A
) )
182, 16, 17sylanbrc 394 . 2  |-  ( A  e.  RR  ->  E! x  e.  R.  <. x ,  0R >.  =  A
)
19 reurex 2523 . . 3  |-  ( E! x  e.  R.  <. x ,  0R >.  =  A  ->  E. x  e.  R.  <.
x ,  0R >.  =  A )
2019, 1sylibr 137 . 2  |-  ( E! x  e.  R.  <. x ,  0R >.  =  A  ->  A  e.  RR )
2118, 20impbii 117 1  |-  ( A  e.  RR  <->  E! x  e.  R.  <. x ,  0R >.  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   A.wral 2306   E.wrex 2307   E!wreu 2308   E*wrmo 2309   <.cop 3378   R.cnr 6395   0Rc0r 6396   RRcr 6888
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-inp 6564  df-i1p 6565  df-enr 6811  df-nr 6812  df-0r 6816  df-r 6899
This theorem is referenced by:  axcaucvglemcl  6969  axcaucvglemval  6971
  Copyright terms: Public domain W3C validator