ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0r Unicode version

Theorem 0r 6807
Description: The constant  0R is a signed real. (Contributed by NM, 9-Aug-1995.)
Assertion
Ref Expression
0r  |-  0R  e.  R.

Proof of Theorem 0r
StepHypRef Expression
1 1pr 6624 . . . 4  |-  1P  e.  P.
2 opelxpi 4354 . . . 4  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  ->  <. 1P ,  1P >.  e.  ( P.  X.  P. ) )
31, 1, 2mp2an 402 . . 3  |-  <. 1P ,  1P >.  e.  ( P. 
X.  P. )
4 enrex 6794 . . . 4  |-  ~R  e.  _V
54ecelqsi 6138 . . 3  |-  ( <. 1P ,  1P >.  e.  ( P.  X.  P. )  ->  [ <. 1P ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )
63, 5ax-mp 7 . 2  |-  [ <. 1P ,  1P >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
7 df-0r 6788 . 2  |-  0R  =  [ <. 1P ,  1P >. ]  ~R
8 df-nr 6784 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
96, 7, 83eltr4i 2119 1  |-  0R  e.  R.
Colors of variables: wff set class
Syntax hints:    e. wcel 1393   <.cop 3375    X. cxp 4321   [cec 6082   /.cqs 6083   P.cnp 6361   1Pc1p 6362    ~R cer 6366   R.cnr 6367   0Rc0r 6368
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3869  ax-sep 3872  ax-nul 3880  ax-pow 3924  ax-pr 3941  ax-un 4157  ax-setind 4247  ax-iinf 4289
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2308  df-rex 2309  df-reu 2310  df-rab 2312  df-v 2556  df-sbc 2762  df-csb 2850  df-dif 2917  df-un 2919  df-in 2921  df-ss 2928  df-nul 3222  df-pw 3358  df-sn 3378  df-pr 3379  df-op 3381  df-uni 3578  df-int 3613  df-iun 3656  df-br 3762  df-opab 3816  df-mpt 3817  df-tr 3852  df-eprel 4023  df-id 4027  df-po 4030  df-iso 4031  df-iord 4090  df-on 4092  df-suc 4095  df-iom 4292  df-xp 4329  df-rel 4330  df-cnv 4331  df-co 4332  df-dm 4333  df-rn 4334  df-res 4335  df-ima 4336  df-iota 4845  df-fun 4882  df-fn 4883  df-f 4884  df-f1 4885  df-fo 4886  df-f1o 4887  df-fv 4888  df-ov 5493  df-oprab 5494  df-mpt2 5495  df-1st 5745  df-2nd 5746  df-recs 5898  df-irdg 5935  df-1o 5979  df-oadd 5983  df-omul 5984  df-er 6084  df-ec 6086  df-qs 6090  df-ni 6374  df-pli 6375  df-mi 6376  df-lti 6377  df-plpq 6414  df-mpq 6415  df-enq 6417  df-nqqs 6418  df-plqqs 6419  df-mqqs 6420  df-1nqqs 6421  df-rq 6422  df-ltnqqs 6423  df-inp 6536  df-i1p 6537  df-enr 6783  df-nr 6784  df-0r 6788
This theorem is referenced by:  addgt0sr  6832  ltadd1sr  6833  opelreal  6876  elreal  6877  elrealeu  6878  elreal2  6879  eqresr  6884  addresr  6885  mulresr  6886  pitonn  6896  peano2nnnn  6901  axresscn  6908  axicn  6911  axi2m1  6921  ax0id  6924  axprecex  6926  axcnre  6927
  Copyright terms: Public domain W3C validator