Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rmo4 Unicode version

Theorem rmo4 2734
 Description: Restricted "at most one" using implicit substitution. (Contributed by NM, 24-Oct-2006.) (Revised by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
rmo4.1
Assertion
Ref Expression
rmo4
Distinct variable groups:   ,,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem rmo4
StepHypRef Expression
1 df-rmo 2314 . 2
2 an4 520 . . . . . . . . 9
3 ancom 253 . . . . . . . . . 10
43anbi1i 431 . . . . . . . . 9
52, 4bitri 173 . . . . . . . 8
65imbi1i 227 . . . . . . 7
7 impexp 250 . . . . . . 7
8 impexp 250 . . . . . . 7
96, 7, 83bitri 195 . . . . . 6
109albii 1359 . . . . 5
11 df-ral 2311 . . . . 5
12 r19.21v 2396 . . . . 5
1310, 11, 123bitr2i 197 . . . 4
1413albii 1359 . . 3
15 eleq1 2100 . . . . 5
16 rmo4.1 . . . . 5
1715, 16anbi12d 442 . . . 4
1817mo4 1961 . . 3
19 df-ral 2311 . . 3
2014, 18, 193bitr4i 201 . 2
211, 20bitri 173 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wb 98  wal 1241   wcel 1393  wmo 1901  wral 2306  wrmo 2309 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-cleq 2033  df-clel 2036  df-ral 2311  df-rmo 2314 This theorem is referenced by:  reu4  2735  lteupri  6715  elrealeu  6906  rereceu  6963  qbtwnz  9106  rsqrmo  9625
 Copyright terms: Public domain W3C validator