ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcaucvglemval Unicode version

Theorem axcaucvglemval 6971
Description: Lemma for axcaucvg 6974. Value of sequence when mapping to  N. and  R.. (Contributed by Jim Kingdon, 10-Jul-2021.)
Hypotheses
Ref Expression
axcaucvg.n  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
axcaucvg.f  |-  ( ph  ->  F : N --> RR )
axcaucvg.cau  |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  -> 
( ( F `  n )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k )  <RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) ) )
axcaucvg.g  |-  G  =  ( j  e.  N.  |->  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
Assertion
Ref Expression
axcaucvglemval  |-  ( (
ph  /\  J  e.  N. )  ->  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  J ) ,  0R >. )
Distinct variable groups:    j, F, z   
z, G    j, J, l, u, z    ph, j    y, l, u    x, y
Allowed substitution hints:    ph( x, y, z, u, k, n, r, l)    F( x, y, u, k, n, r, l)    G( x, y, u, j, k, n, r, l)    J( x, y, k, n, r)    N( x, y, z, u, j, k, n, r, l)

Proof of Theorem axcaucvglemval
StepHypRef Expression
1 axcaucvg.g . . . . 5  |-  G  =  ( j  e.  N.  |->  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
21a1i 9 . . . 4  |-  ( (
ph  /\  J  e.  N. )  ->  G  =  ( j  e.  N.  |->  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
) )
3 opeq1 3549 . . . . . . . . . . . . . . . 16  |-  ( j  =  J  ->  <. j ,  1o >.  =  <. J ,  1o >. )
43eceq1d 6142 . . . . . . . . . . . . . . 15  |-  ( j  =  J  ->  [ <. j ,  1o >. ]  ~Q  =  [ <. J ,  1o >. ]  ~Q  )
54breq2d 3776 . . . . . . . . . . . . . 14  |-  ( j  =  J  ->  (
l  <Q  [ <. j ,  1o >. ]  ~Q  <->  l  <Q  [
<. J ,  1o >. ]  ~Q  ) )
65abbidv 2155 . . . . . . . . . . . . 13  |-  ( j  =  J  ->  { l  |  l  <Q  [ <. j ,  1o >. ]  ~Q  }  =  { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  }
)
74breq1d 3774 . . . . . . . . . . . . . 14  |-  ( j  =  J  ->  ( [ <. j ,  1o >. ]  ~Q  <Q  u  <->  [
<. J ,  1o >. ]  ~Q  <Q  u )
)
87abbidv 2155 . . . . . . . . . . . . 13  |-  ( j  =  J  ->  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u }  =  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } )
96, 8opeq12d 3557 . . . . . . . . . . . 12  |-  ( j  =  J  ->  <. { l  |  l  <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  =  <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >. )
109oveq1d 5527 . . . . . . . . . . 11  |-  ( j  =  J  ->  ( <. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P )  =  ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) )
1110opeq1d 3555 . . . . . . . . . 10  |-  ( j  =  J  ->  <. ( <. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >.  =  <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. )
1211eceq1d 6142 . . . . . . . . 9  |-  ( j  =  J  ->  [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  =  [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
1312opeq1d 3555 . . . . . . . 8  |-  ( j  =  J  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  =  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
1413fveq2d 5182 . . . . . . 7  |-  ( j  =  J  ->  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
1514eqeq1d 2048 . . . . . 6  |-  ( j  =  J  ->  (
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >.  <->  ( F `  <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
1615riotabidv 5470 . . . . 5  |-  ( j  =  J  ->  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  =  ( iota_ z  e. 
R.  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
1716adantl 262 . . . 4  |-  ( ( ( ph  /\  J  e.  N. )  /\  j  =  J )  ->  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  =  ( iota_ z  e. 
R.  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
18 simpr 103 . . . 4  |-  ( (
ph  /\  J  e.  N. )  ->  J  e. 
N. )
19 axcaucvg.n . . . . 5  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
20 axcaucvg.f . . . . 5  |-  ( ph  ->  F : N --> RR )
2119, 20axcaucvglemcl 6969 . . . 4  |-  ( (
ph  /\  J  e.  N. )  ->  ( iota_ z  e.  R.  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  e.  R. )
222, 17, 18, 21fvmptd 5253 . . 3  |-  ( (
ph  /\  J  e.  N. )  ->  ( G `
 J )  =  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
2322eqcomd 2045 . 2  |-  ( (
ph  /\  J  e.  N. )  ->  ( iota_ z  e.  R.  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  =  ( G `  J ) )
2422, 21eqeltrd 2114 . . 3  |-  ( (
ph  /\  J  e.  N. )  ->  ( G `
 J )  e. 
R. )
2520adantr 261 . . . . . 6  |-  ( (
ph  /\  J  e.  N. )  ->  F : N
--> RR )
26 pitonn 6924 . . . . . . . 8  |-  ( J  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
2726, 19syl6eleqr 2131 . . . . . . 7  |-  ( J  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  N )
2827adantl 262 . . . . . 6  |-  ( (
ph  /\  J  e.  N. )  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  N )
2925, 28ffvelrnd 5303 . . . . 5  |-  ( (
ph  /\  J  e.  N. )  ->  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  e.  RR )
30 elrealeu 6906 . . . . 5  |-  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  e.  RR  <->  E! z  e.  R.  <. z ,  0R >.  =  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
3129, 30sylib 127 . . . 4  |-  ( (
ph  /\  J  e.  N. )  ->  E! z  e.  R.  <. z ,  0R >.  =  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
32 eqcom 2042 . . . . 5  |-  ( <.
z ,  0R >.  =  ( F `  <. [
<. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <->  ( F `  <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
3332reubii 2495 . . . 4  |-  ( E! z  e.  R.  <. z ,  0R >.  =  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <->  E! z  e.  R.  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
3431, 33sylib 127 . . 3  |-  ( (
ph  /\  J  e.  N. )  ->  E! z  e.  R.  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
35 opeq1 3549 . . . . 5  |-  ( z  =  ( G `  J )  ->  <. z ,  0R >.  =  <. ( G `  J ) ,  0R >. )
3635eqeq2d 2051 . . . 4  |-  ( z  =  ( G `  J )  ->  (
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >.  <->  ( F `  <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  J ) ,  0R >. )
)
3736riota2 5490 . . 3  |-  ( ( ( G `  J
)  e.  R.  /\  E! z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  ->  ( ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  J ) ,  0R >.  <->  ( iota_ z  e.  R.  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  =  ( G `  J ) ) )
3824, 34, 37syl2anc 391 . 2  |-  ( (
ph  /\  J  e.  N. )  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  J ) ,  0R >.  <->  ( iota_ z  e.  R.  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )  =  ( G `  J ) ) )
3923, 38mpbird 156 1  |-  ( (
ph  /\  J  e.  N. )  ->  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. J ,  1o >. ]  ~Q  } ,  { u  |  [ <. J ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  J ) ,  0R >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   {cab 2026   A.wral 2306   E!wreu 2308   <.cop 3378   |^|cint 3615   class class class wbr 3764    |-> cmpt 3818   -->wf 4898   ` cfv 4902   iota_crio 5467  (class class class)co 5512   1oc1o 5994   [cec 6104   N.cnpi 6370    ~Q ceq 6377    <Q cltq 6383   1Pc1p 6390    +P. cpp 6391    ~R cer 6394   R.cnr 6395   0Rc0r 6396   RRcr 6888   1c1 6890    + caddc 6892    <RR cltrr 6893    x. cmul 6894
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-dc 743  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-eprel 4026  df-id 4030  df-po 4033  df-iso 4034  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-riota 5468  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-1o 6001  df-2o 6002  df-oadd 6005  df-omul 6006  df-er 6106  df-ec 6108  df-qs 6112  df-ni 6402  df-pli 6403  df-mi 6404  df-lti 6405  df-plpq 6442  df-mpq 6443  df-enq 6445  df-nqqs 6446  df-plqqs 6447  df-mqqs 6448  df-1nqqs 6449  df-rq 6450  df-ltnqqs 6451  df-enq0 6522  df-nq0 6523  df-0nq0 6524  df-plq0 6525  df-mq0 6526  df-inp 6564  df-i1p 6565  df-iplp 6566  df-enr 6811  df-nr 6812  df-plr 6813  df-0r 6816  df-1r 6817  df-c 6895  df-1 6897  df-r 6899  df-add 6900
This theorem is referenced by:  axcaucvglemcau  6972  axcaucvglemres  6973
  Copyright terms: Public domain W3C validator