ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opthg Unicode version

Theorem opthg 3975
Description: Ordered pair theorem.  C and  D are not required to be sets under our specific ordered pair definition. (Contributed by NM, 14-Oct-2005.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
opthg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  =  <. C ,  D >.  <-> 
( A  =  C  /\  B  =  D ) ) )

Proof of Theorem opthg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 3549 . . . 4  |-  ( x  =  A  ->  <. x ,  y >.  =  <. A ,  y >. )
21eqeq1d 2048 . . 3  |-  ( x  =  A  ->  ( <. x ,  y >.  =  <. C ,  D >.  <->  <. A ,  y >.  =  <. C ,  D >. ) )
3 eqeq1 2046 . . . 4  |-  ( x  =  A  ->  (
x  =  C  <->  A  =  C ) )
43anbi1d 438 . . 3  |-  ( x  =  A  ->  (
( x  =  C  /\  y  =  D )  <->  ( A  =  C  /\  y  =  D ) ) )
52, 4bibi12d 224 . 2  |-  ( x  =  A  ->  (
( <. x ,  y
>.  =  <. C ,  D >. 
<->  ( x  =  C  /\  y  =  D ) )  <->  ( <. A ,  y >.  =  <. C ,  D >.  <->  ( A  =  C  /\  y  =  D ) ) ) )
6 opeq2 3550 . . . 4  |-  ( y  =  B  ->  <. A , 
y >.  =  <. A ,  B >. )
76eqeq1d 2048 . . 3  |-  ( y  =  B  ->  ( <. A ,  y >.  =  <. C ,  D >.  <->  <. A ,  B >.  = 
<. C ,  D >. ) )
8 eqeq1 2046 . . . 4  |-  ( y  =  B  ->  (
y  =  D  <->  B  =  D ) )
98anbi2d 437 . . 3  |-  ( y  =  B  ->  (
( A  =  C  /\  y  =  D )  <->  ( A  =  C  /\  B  =  D ) ) )
107, 9bibi12d 224 . 2  |-  ( y  =  B  ->  (
( <. A ,  y
>.  =  <. C ,  D >. 
<->  ( A  =  C  /\  y  =  D ) )  <->  ( <. A ,  B >.  =  <. C ,  D >.  <->  ( A  =  C  /\  B  =  D ) ) ) )
11 vex 2560 . . 3  |-  x  e. 
_V
12 vex 2560 . . 3  |-  y  e. 
_V
1311, 12opth 3974 . 2  |-  ( <.
x ,  y >.  =  <. C ,  D >.  <-> 
( x  =  C  /\  y  =  D ) )
145, 10, 13vtocl2g 2617 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( <. A ,  B >.  =  <. C ,  D >.  <-> 
( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243    e. wcel 1393   <.cop 3378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384
This theorem is referenced by:  opthg2  3976  xpopth  5802  eqop  5803  preqlu  6570  cauappcvgprlemladd  6756  elrealeu  6906
  Copyright terms: Public domain W3C validator