ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moriotass Unicode version

Theorem moriotass 5496
Description: Restriction of a unique element to a smaller class. (Contributed by NM, 19-Feb-2006.) (Revised by NM, 16-Jun-2017.)
Assertion
Ref Expression
moriotass  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\ 
E* x  e.  B  ph )  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  B  ph ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem moriotass
StepHypRef Expression
1 ssrexv 3005 . . . . 5  |-  ( A 
C_  B  ->  ( E. x  e.  A  ph 
->  E. x  e.  B  ph ) )
21imp 115 . . . 4  |-  ( ( A  C_  B  /\  E. x  e.  A  ph )  ->  E. x  e.  B  ph )
323adant3 924 . . 3  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\ 
E* x  e.  B  ph )  ->  E. x  e.  B  ph )
4 simp3 906 . . 3  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\ 
E* x  e.  B  ph )  ->  E* x  e.  B  ph )
5 reu5 2522 . . 3  |-  ( E! x  e.  B  ph  <->  ( E. x  e.  B  ph 
/\  E* x  e.  B  ph ) )
63, 4, 5sylanbrc 394 . 2  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\ 
E* x  e.  B  ph )  ->  E! x  e.  B  ph )
7 riotass 5495 . 2  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\  E! x  e.  B  ph )  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  B  ph ) )
86, 7syld3an3 1180 1  |-  ( ( A  C_  B  /\  E. x  e.  A  ph  /\ 
E* x  e.  B  ph )  ->  ( iota_ x  e.  A  ph )  =  ( iota_ x  e.  B  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 885    = wceq 1243   E.wrex 2307   E!wreu 2308   E*wrmo 2309    C_ wss 2917   iota_crio 5467
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-rmo 2314  df-rab 2315  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-sn 3381  df-pr 3382  df-uni 3581  df-iota 4867  df-riota 5468
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator