ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqopab2b Unicode version

Theorem eqopab2b 4016
Description: Equivalence of ordered pair abstraction equality and biconditional. (Contributed by Mario Carneiro, 4-Jan-2017.)
Assertion
Ref Expression
eqopab2b  |-  ( {
<. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  ps }  <->  A. x A. y ( ph  <->  ps )
)

Proof of Theorem eqopab2b
StepHypRef Expression
1 ssopab2b 4013 . . 3  |-  ( {
<. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps } 
<-> 
A. x A. y
( ph  ->  ps )
)
2 ssopab2b 4013 . . 3  |-  ( {
<. x ,  y >.  |  ps }  C_  { <. x ,  y >.  |  ph } 
<-> 
A. x A. y
( ps  ->  ph )
)
31, 2anbi12i 433 . 2  |-  ( ( { <. x ,  y
>.  |  ph }  C_  {
<. x ,  y >.  |  ps }  /\  { <. x ,  y >.  |  ps }  C_  { <. x ,  y >.  |  ph } )  <->  ( A. x A. y ( ph  ->  ps )  /\  A. x A. y ( ps 
->  ph ) ) )
4 eqss 2960 . 2  |-  ( {
<. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  ps }  <->  ( { <. x ,  y >.  |  ph }  C_  { <. x ,  y >.  |  ps }  /\  { <. x ,  y >.  |  ps }  C_  { <. x ,  y >.  |  ph } ) )
5 2albiim 1377 . 2  |-  ( A. x A. y ( ph  <->  ps )  <->  ( A. x A. y ( ph  ->  ps )  /\  A. x A. y ( ps  ->  ph ) ) )
63, 4, 53bitr4i 201 1  |-  ( {
<. x ,  y >.  |  ph }  =  { <. x ,  y >.  |  ps }  <->  A. x A. y ( ph  <->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98   A.wal 1241    = wceq 1243    C_ wss 2917   {copab 3817
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-opab 3819
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator