ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp11m Unicode version

Theorem xp11m 4759
Description: The cross product of inhabited classes is one-to-one. (Contributed by Jim Kingdon, 13-Dec-2018.)
Assertion
Ref Expression
xp11m  |-  ( ( E. x  x  e.  A  /\  E. y 
y  e.  B )  ->  ( ( A  X.  B )  =  ( C  X.  D
)  <->  ( A  =  C  /\  B  =  D ) ) )
Distinct variable groups:    x, A    y, B
Allowed substitution hints:    A( y)    B( x)    C( x, y)    D( x, y)

Proof of Theorem xp11m
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 xpm 4745 . . 3  |-  ( ( E. x  x  e.  A  /\  E. y 
y  e.  B )  <->  E. z  z  e.  ( A  X.  B
) )
2 anidm 376 . . . . . 6  |-  ( ( E. z  z  e.  ( A  X.  B
)  /\  E. z 
z  e.  ( A  X.  B ) )  <->  E. z  z  e.  ( A  X.  B
) )
3 eleq2 2101 . . . . . . . 8  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  (
z  e.  ( A  X.  B )  <->  z  e.  ( C  X.  D
) ) )
43exbidv 1706 . . . . . . 7  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  ( E. z  z  e.  ( A  X.  B
)  <->  E. z  z  e.  ( C  X.  D
) ) )
54anbi2d 437 . . . . . 6  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  (
( E. z  z  e.  ( A  X.  B )  /\  E. z  z  e.  ( A  X.  B ) )  <-> 
( E. z  z  e.  ( A  X.  B )  /\  E. z  z  e.  ( C  X.  D ) ) ) )
62, 5syl5bbr 183 . . . . 5  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  ( E. z  z  e.  ( A  X.  B
)  <->  ( E. z 
z  e.  ( A  X.  B )  /\  E. z  z  e.  ( C  X.  D ) ) ) )
7 eqimss 2997 . . . . . . . 8  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  ( A  X.  B )  C_  ( C  X.  D
) )
8 ssxpbm 4756 . . . . . . . 8  |-  ( E. z  z  e.  ( A  X.  B )  ->  ( ( A  X.  B )  C_  ( C  X.  D
)  <->  ( A  C_  C  /\  B  C_  D
) ) )
97, 8syl5ibcom 144 . . . . . . 7  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  ( E. z  z  e.  ( A  X.  B
)  ->  ( A  C_  C  /\  B  C_  D ) ) )
10 eqimss2 2998 . . . . . . . 8  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  ( C  X.  D )  C_  ( A  X.  B
) )
11 ssxpbm 4756 . . . . . . . 8  |-  ( E. z  z  e.  ( C  X.  D )  ->  ( ( C  X.  D )  C_  ( A  X.  B
)  <->  ( C  C_  A  /\  D  C_  B
) ) )
1210, 11syl5ibcom 144 . . . . . . 7  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  ( E. z  z  e.  ( C  X.  D
)  ->  ( C  C_  A  /\  D  C_  B ) ) )
139, 12anim12d 318 . . . . . 6  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  (
( E. z  z  e.  ( A  X.  B )  /\  E. z  z  e.  ( C  X.  D ) )  ->  ( ( A 
C_  C  /\  B  C_  D )  /\  ( C  C_  A  /\  D  C_  B ) ) ) )
14 an4 520 . . . . . . 7  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  C_  A  /\  D  C_  B
) )  <->  ( ( A  C_  C  /\  C  C_  A )  /\  ( B  C_  D  /\  D  C_  B ) ) )
15 eqss 2960 . . . . . . . 8  |-  ( A  =  C  <->  ( A  C_  C  /\  C  C_  A ) )
16 eqss 2960 . . . . . . . 8  |-  ( B  =  D  <->  ( B  C_  D  /\  D  C_  B ) )
1715, 16anbi12i 433 . . . . . . 7  |-  ( ( A  =  C  /\  B  =  D )  <->  ( ( A  C_  C  /\  C  C_  A )  /\  ( B  C_  D  /\  D  C_  B
) ) )
1814, 17bitr4i 176 . . . . . 6  |-  ( ( ( A  C_  C  /\  B  C_  D )  /\  ( C  C_  A  /\  D  C_  B
) )  <->  ( A  =  C  /\  B  =  D ) )
1913, 18syl6ib 150 . . . . 5  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  (
( E. z  z  e.  ( A  X.  B )  /\  E. z  z  e.  ( C  X.  D ) )  ->  ( A  =  C  /\  B  =  D ) ) )
206, 19sylbid 139 . . . 4  |-  ( ( A  X.  B )  =  ( C  X.  D )  ->  ( E. z  z  e.  ( A  X.  B
)  ->  ( A  =  C  /\  B  =  D ) ) )
2120com12 27 . . 3  |-  ( E. z  z  e.  ( A  X.  B )  ->  ( ( A  X.  B )  =  ( C  X.  D
)  ->  ( A  =  C  /\  B  =  D ) ) )
221, 21sylbi 114 . 2  |-  ( ( E. x  x  e.  A  /\  E. y 
y  e.  B )  ->  ( ( A  X.  B )  =  ( C  X.  D
)  ->  ( A  =  C  /\  B  =  D ) ) )
23 xpeq12 4364 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  ( A  X.  B
)  =  ( C  X.  D ) )
2422, 23impbid1 130 1  |-  ( ( E. x  x  e.  A  /\  E. y 
y  e.  B )  ->  ( ( A  X.  B )  =  ( C  X.  D
)  <->  ( A  =  C  /\  B  =  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243   E.wex 1381    e. wcel 1393    C_ wss 2917    X. cxp 4343
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-cnv 4353  df-dm 4355  df-rn 4356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator