ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem7 Unicode version

Theorem tfrlem7 5933
Description: Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem7  |-  Fun recs ( F )
Distinct variable group:    x, f, y, F
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem7
Dummy variables  g  h  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . 3  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
21tfrlem6 5932 . 2  |-  Rel recs ( F )
31recsfval 5931 . . . . . . . . 9  |- recs ( F )  =  U. A
43eleq2i 2104 . . . . . . . 8  |-  ( <.
x ,  u >.  e. recs
( F )  <->  <. x ,  u >.  e.  U. A
)
5 eluni 3583 . . . . . . . 8  |-  ( <.
x ,  u >.  e. 
U. A  <->  E. g
( <. x ,  u >.  e.  g  /\  g  e.  A ) )
64, 5bitri 173 . . . . . . 7  |-  ( <.
x ,  u >.  e. recs
( F )  <->  E. g
( <. x ,  u >.  e.  g  /\  g  e.  A ) )
73eleq2i 2104 . . . . . . . 8  |-  ( <.
x ,  v >.  e. recs ( F )  <->  <. x ,  v >.  e.  U. A
)
8 eluni 3583 . . . . . . . 8  |-  ( <.
x ,  v >.  e.  U. A  <->  E. h
( <. x ,  v
>.  e.  h  /\  h  e.  A ) )
97, 8bitri 173 . . . . . . 7  |-  ( <.
x ,  v >.  e. recs ( F )  <->  E. h
( <. x ,  v
>.  e.  h  /\  h  e.  A ) )
106, 9anbi12i 433 . . . . . 6  |-  ( (
<. x ,  u >.  e. recs
( F )  /\  <.
x ,  v >.  e. recs ( F ) )  <-> 
( E. g (
<. x ,  u >.  e.  g  /\  g  e.  A )  /\  E. h ( <. x ,  v >.  e.  h  /\  h  e.  A
) ) )
11 eeanv 1807 . . . . . 6  |-  ( E. g E. h ( ( <. x ,  u >.  e.  g  /\  g  e.  A )  /\  ( <. x ,  v >.  e.  h  /\  h  e.  A ) )  <->  ( E. g ( <. x ,  u >.  e.  g  /\  g  e.  A
)  /\  E. h
( <. x ,  v
>.  e.  h  /\  h  e.  A ) ) )
1210, 11bitr4i 176 . . . . 5  |-  ( (
<. x ,  u >.  e. recs
( F )  /\  <.
x ,  v >.  e. recs ( F ) )  <->  E. g E. h ( ( <. x ,  u >.  e.  g  /\  g  e.  A )  /\  ( <. x ,  v >.  e.  h  /\  h  e.  A ) ) )
13 df-br 3765 . . . . . . . . 9  |-  ( x g u  <->  <. x ,  u >.  e.  g
)
14 df-br 3765 . . . . . . . . 9  |-  ( x h v  <->  <. x ,  v >.  e.  h
)
1513, 14anbi12i 433 . . . . . . . 8  |-  ( ( x g u  /\  x h v )  <-> 
( <. x ,  u >.  e.  g  /\  <. x ,  v >.  e.  h
) )
161tfrlem5 5930 . . . . . . . . 9  |-  ( ( g  e.  A  /\  h  e.  A )  ->  ( ( x g u  /\  x h v )  ->  u  =  v ) )
1716impcom 116 . . . . . . . 8  |-  ( ( ( x g u  /\  x h v )  /\  ( g  e.  A  /\  h  e.  A ) )  ->  u  =  v )
1815, 17sylanbr 269 . . . . . . 7  |-  ( ( ( <. x ,  u >.  e.  g  /\  <. x ,  v >.  e.  h
)  /\  ( g  e.  A  /\  h  e.  A ) )  ->  u  =  v )
1918an4s 522 . . . . . 6  |-  ( ( ( <. x ,  u >.  e.  g  /\  g  e.  A )  /\  ( <. x ,  v >.  e.  h  /\  h  e.  A ) )  ->  u  =  v )
2019exlimivv 1776 . . . . 5  |-  ( E. g E. h ( ( <. x ,  u >.  e.  g  /\  g  e.  A )  /\  ( <. x ,  v >.  e.  h  /\  h  e.  A ) )  ->  u  =  v )
2112, 20sylbi 114 . . . 4  |-  ( (
<. x ,  u >.  e. recs
( F )  /\  <.
x ,  v >.  e. recs ( F ) )  ->  u  =  v )
2221ax-gen 1338 . . 3  |-  A. v
( ( <. x ,  u >.  e. recs ( F )  /\  <. x ,  v >.  e. recs ( F ) )  ->  u  =  v )
2322gen2 1339 . 2  |-  A. x A. u A. v ( ( <. x ,  u >.  e. recs ( F )  /\  <. x ,  v
>.  e. recs ( F ) )  ->  u  =  v )
24 dffun4 4913 . 2  |-  ( Fun recs
( F )  <->  ( Rel recs ( F )  /\  A. x A. u A. v
( ( <. x ,  u >.  e. recs ( F )  /\  <. x ,  v >.  e. recs ( F ) )  ->  u  =  v )
) )
252, 23, 24mpbir2an 849 1  |-  Fun recs ( F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97   A.wal 1241    = wceq 1243   E.wex 1381    e. wcel 1393   {cab 2026   A.wral 2306   E.wrex 2307   <.cop 3378   U.cuni 3580   class class class wbr 3764   Oncon0 4100    |` cres 4347   Rel wrel 4350   Fun wfun 4896    Fn wfn 4897   ` cfv 4902  recscrecs 5919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-res 4357  df-iota 4867  df-fun 4904  df-fn 4905  df-fv 4910  df-recs 5920
This theorem is referenced by:  tfrlem9  5935  tfrlemibfn  5942  tfrlemiubacc  5944  tfri1d  5949  tfrfun  5955  rdgfun  5960
  Copyright terms: Public domain W3C validator