ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri1d Unicode version

Theorem tfri1d 5949
Description: Principle of Transfinite Recursion, part 1 of 3. Theorem 7.41(1) of [TakeutiZaring] p. 47, with an additional condition.

The condition is that  G is defined "everywhere" and here is stated as  ( G `  x )  e.  _V. Alternatively  A. x  e.  On A. f ( f  Fn  x  -> 
f  e.  dom  G
) would suffice.

Given a function  G satisfying that condition, we define a class  A of all "acceptable" functions. The final function we're interested in is the union 
F  = recs ( G ) of them.  F is then said to be defined by transfinite recursion. The purpose of the 3 parts of this theorem is to demonstrate properties of  F. In this first part we show that  F is a function whose domain is all ordinal numbers. (Contributed by Jim Kingdon, 4-May-2019.) (Revised by Mario Carneiro, 24-May-2019.)

Hypotheses
Ref Expression
tfri1d.1  |-  F  = recs ( G )
tfri1d.2  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
Assertion
Ref Expression
tfri1d  |-  ( ph  ->  F  Fn  On )
Distinct variable group:    x, G
Allowed substitution hints:    ph( x)    F( x)

Proof of Theorem tfri1d
Dummy variables  f  g  u  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2040 . . . . . 6  |-  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) }  =  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) }
21tfrlem3 5926 . . . . 5  |-  { g  |  E. z  e.  On  ( g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( G `  ( g  |`  u ) ) ) }  =  { f  |  E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y ) ) ) }
3 tfri1d.2 . . . . 5  |-  ( ph  ->  A. x ( Fun 
G  /\  ( G `  x )  e.  _V ) )
42, 3tfrlemi14d 5947 . . . 4  |-  ( ph  ->  dom recs ( G )  =  On )
5 eqid 2040 . . . . 5  |-  { w  |  E. y  e.  On  ( w  Fn  y  /\  A. z  e.  y  ( w `  z
)  =  ( G `
 ( w  |`  z ) ) ) }  =  { w  |  E. y  e.  On  ( w  Fn  y  /\  A. z  e.  y  ( w `  z
)  =  ( G `
 ( w  |`  z ) ) ) }
65tfrlem7 5933 . . . 4  |-  Fun recs ( G )
74, 6jctil 295 . . 3  |-  ( ph  ->  ( Fun recs ( G
)  /\  dom recs ( G )  =  On ) )
8 df-fn 4905 . . 3  |-  (recs ( G )  Fn  On  <->  ( Fun recs ( G )  /\  dom recs ( G
)  =  On ) )
97, 8sylibr 137 . 2  |-  ( ph  -> recs ( G )  Fn  On )
10 tfri1d.1 . . 3  |-  F  = recs ( G )
1110fneq1i 4993 . 2  |-  ( F  Fn  On  <-> recs ( G
)  Fn  On )
129, 11sylibr 137 1  |-  ( ph  ->  F  Fn  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97   A.wal 1241    = wceq 1243    e. wcel 1393   {cab 2026   A.wral 2306   E.wrex 2307   _Vcvv 2557   Oncon0 4100   dom cdm 4345    |` cres 4347   Fun wfun 4896    Fn wfn 4897   ` cfv 4902  recscrecs 5919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-recs 5920
This theorem is referenced by:  tfri2d  5950  tfri1  5951  rdgifnon  5966  rdgifnon2  5967  frecfnom  5986  frecsuclemdm  5988  frecsuclem3  5990
  Copyright terms: Public domain W3C validator