Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frecsuclemdm | Unicode version |
Description: Lemma for frecsuc 5991. (Contributed by Jim Kingdon, 15-Aug-2019.) |
Ref | Expression |
---|---|
frecsuclem1.h |
Ref | Expression |
---|---|
frecsuclemdm | recs |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnon 4332 | . . . . 5 | |
2 | suceloni 4227 | . . . . 5 | |
3 | onss 4219 | . . . . 5 | |
4 | 1, 2, 3 | 3syl 17 | . . . 4 |
5 | 4 | 3ad2ant3 927 | . . 3 |
6 | eqid 2040 | . . . . . . 7 recs recs | |
7 | frecsuclem1.h | . . . . . . . 8 | |
8 | 7 | frectfr 5985 | . . . . . . 7 |
9 | 6, 8 | tfri1d 5949 | . . . . . 6 recs |
10 | fndm 4998 | . . . . . 6 recs recs | |
11 | 9, 10 | syl 14 | . . . . 5 recs |
12 | 11 | sseq2d 2973 | . . . 4 recs |
13 | 12 | 3adant3 924 | . . 3 recs |
14 | 5, 13 | mpbird 156 | . 2 recs |
15 | ssdmres 4633 | . 2 recs recs | |
16 | 14, 15 | sylib 127 | 1 recs |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wb 98 wo 629 w3a 885 wal 1241 wceq 1243 wcel 1393 cab 2026 wrex 2307 cvv 2557 wss 2917 c0 3224 cmpt 3818 con0 4100 csuc 4102 com 4313 cdm 4345 cres 4347 wfn 4897 cfv 4902 recscrecs 5919 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-coll 3872 ax-sep 3875 ax-nul 3883 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-setind 4262 ax-iinf 4311 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-fal 1249 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-reu 2313 df-rab 2315 df-v 2559 df-sbc 2765 df-csb 2853 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-nul 3225 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-int 3616 df-iun 3659 df-br 3765 df-opab 3819 df-mpt 3820 df-tr 3855 df-id 4030 df-iord 4103 df-on 4105 df-suc 4108 df-iom 4314 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-fv 4910 df-recs 5920 |
This theorem is referenced by: frecsuclem3 5990 |
Copyright terms: Public domain | W3C validator |