ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecsuclemdm Unicode version

Theorem frecsuclemdm 5988
Description: Lemma for frecsuc 5991. (Contributed by Jim Kingdon, 15-Aug-2019.)
Hypothesis
Ref Expression
frecsuclem1.h  |-  G  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
Assertion
Ref Expression
frecsuclemdm  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  dom  (recs ( G )  |`  suc  B
)  =  suc  B
)
Distinct variable groups:    A, g, m, x, z    B, g, m, x, z    g, F, m, x, z    g, G, m, x, z    g, V, m, x
Allowed substitution hint:    V( z)

Proof of Theorem frecsuclemdm
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 nnon 4332 . . . . 5  |-  ( B  e.  om  ->  B  e.  On )
2 suceloni 4227 . . . . 5  |-  ( B  e.  On  ->  suc  B  e.  On )
3 onss 4219 . . . . 5  |-  ( suc 
B  e.  On  ->  suc 
B  C_  On )
41, 2, 33syl 17 . . . 4  |-  ( B  e.  om  ->  suc  B 
C_  On )
543ad2ant3 927 . . 3  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  suc  B  C_  On )
6 eqid 2040 . . . . . . 7  |- recs ( G )  = recs ( G )
7 frecsuclem1.h . . . . . . . 8  |-  G  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
87frectfr 5985 . . . . . . 7  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  A. y
( Fun  G  /\  ( G `  y )  e.  _V ) )
96, 8tfri1d 5949 . . . . . 6  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  -> recs ( G )  Fn  On )
10 fndm 4998 . . . . . 6  |-  (recs ( G )  Fn  On  ->  dom recs ( G )  =  On )
119, 10syl 14 . . . . 5  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  dom recs ( G )  =  On )
1211sseq2d 2973 . . . 4  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  ( suc  B  C_  dom recs ( G )  <->  suc  B  C_  On ) )
13123adant3 924 . . 3  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  ( suc  B  C_ 
dom recs ( G )  <->  suc  B  C_  On ) )
145, 13mpbird 156 . 2  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  suc  B  C_  dom recs ( G ) )
15 ssdmres 4633 . 2  |-  ( suc 
B  C_  dom recs ( G )  <->  dom  (recs ( G )  |`  suc  B )  =  suc  B )
1614, 15sylib 127 1  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V  /\  B  e.  om )  ->  dom  (recs ( G )  |`  suc  B
)  =  suc  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    \/ wo 629    /\ w3a 885   A.wal 1241    = wceq 1243    e. wcel 1393   {cab 2026   E.wrex 2307   _Vcvv 2557    C_ wss 2917   (/)c0 3224    |-> cmpt 3818   Oncon0 4100   suc csuc 4102   omcom 4313   dom cdm 4345    |` cres 4347    Fn wfn 4897   ` cfv 4902  recscrecs 5919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-recs 5920
This theorem is referenced by:  frecsuclem3  5990
  Copyright terms: Public domain W3C validator