ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frectfr Unicode version

Theorem frectfr 5985
Description: Lemma to connect transfinite recursion theorems with finite recursion. That is, given the conditions  F  Fn  _V and  A  e.  V on frec ( F ,  A ), we want to be able to apply tfri1d 5949 or tfri2d 5950, and this lemma lets us satisfy hypotheses of those theorems.

(Contributed by Jim Kingdon, 15-Aug-2019.)

Hypothesis
Ref Expression
frectfr.1  |-  G  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
Assertion
Ref Expression
frectfr  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  A. y
( Fun  G  /\  ( G `  y )  e.  _V ) )
Distinct variable groups:    g, m, x, y, A    z, g, F, m, x, y    g, V, m, y
Allowed substitution hints:    A( z)    G( x, y, z, g, m)    V( x, z)

Proof of Theorem frectfr
StepHypRef Expression
1 vex 2560 . . . . . . . 8  |-  g  e. 
_V
21a1i 9 . . . . . . 7  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  g  e.  _V )
3 simpl 102 . . . . . . 7  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  A. z
( F `  z
)  e.  _V )
4 simpr 103 . . . . . . 7  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  A  e.  V )
52, 3, 4frecabex 5984 . . . . . 6  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  e.  _V )
65ralrimivw 2393 . . . . 5  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  A. g  e.  _V  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  e.  _V )
7 frectfr.1 . . . . . 6  |-  G  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
87fnmpt 5025 . . . . 5  |-  ( A. g  e.  _V  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  e.  _V  ->  G  Fn  _V )
96, 8syl 14 . . . 4  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  G  Fn  _V )
10 vex 2560 . . . 4  |-  y  e. 
_V
11 funfvex 5192 . . . . 5  |-  ( ( Fun  G  /\  y  e.  dom  G )  -> 
( G `  y
)  e.  _V )
1211funfni 4999 . . . 4  |-  ( ( G  Fn  _V  /\  y  e.  _V )  ->  ( G `  y
)  e.  _V )
139, 10, 12sylancl 392 . . 3  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  ( G `  y )  e.  _V )
147funmpt2 4939 . . 3  |-  Fun  G
1513, 14jctil 295 . 2  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  ( Fun  G  /\  ( G `
 y )  e. 
_V ) )
1615alrimiv 1754 1  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  A. y
( Fun  G  /\  ( G `  y )  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    \/ wo 629   A.wal 1241    = wceq 1243    e. wcel 1393   {cab 2026   A.wral 2306   E.wrex 2307   _Vcvv 2557   (/)c0 3224    |-> cmpt 3818   suc csuc 4102   omcom 4313   dom cdm 4345   Fun wfun 4896    Fn wfn 4897   ` cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910
This theorem is referenced by:  frecfnom  5986  frecsuclem1  5987  frecsuclemdm  5988  frecsuclem3  5990
  Copyright terms: Public domain W3C validator