Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfri2d Unicode version

Theorem tfri2d 5950
 Description: Principle of Transfinite Recursion, part 2 of 3. Theorem 7.41(2) of [TakeutiZaring] p. 47, with an additional condition on the recursion rule ( as described at tfri1 5951). Here we show that the function has the property that for any function satisfying that condition, the "next" value of is recursively applied to all "previous" values of . (Contributed by Jim Kingdon, 4-May-2019.)
Hypotheses
Ref Expression
tfri1d.1 recs
tfri1d.2
Assertion
Ref Expression
tfri2d
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem tfri2d
StepHypRef Expression
1 tfri1d.1 . . . . . 6 recs
2 tfri1d.2 . . . . . 6
31, 2tfri1d 5949 . . . . 5
4 fndm 4998 . . . . 5
53, 4syl 14 . . . 4
65eleq2d 2107 . . 3
76biimpar 281 . 2
81tfr2a 5936 . 2
97, 8syl 14 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97  wal 1241   wceq 1243   wcel 1393  cvv 2557  con0 4100   cdm 4345   cres 4347   wfun 4896   wfn 4897  cfv 4902  recscrecs 5919 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262 This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-recs 5920 This theorem is referenced by:  rdgivallem  5968  frecsuclem1  5987
 Copyright terms: Public domain W3C validator