![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fndm | Unicode version |
Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fndm |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 4905 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | simprbi 260 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 |
This theorem depends on definitions: df-bi 110 df-fn 4905 |
This theorem is referenced by: funfni 4999 fndmu 5000 fnbr 5001 fnco 5007 fnresdm 5008 fnresdisj 5009 fnssresb 5011 fn0 5018 fnimadisj 5019 fnimaeq0 5020 dmmpti 5028 fdm 5050 f1dm 5096 f1odm 5130 f1o00 5161 fvelimab 5229 fvun1 5239 eqfnfv2 5266 fndmdif 5272 fneqeql2 5276 elpreima 5286 fsn2 5337 fconst3m 5380 fconst4m 5381 fnfvima 5393 funiunfvdm 5402 fnunirn 5406 dff13 5407 f1eqcocnv 5431 oprssov 5642 offval 5719 ofrfval 5720 fnexALT 5740 dmmpt2 5831 tposfo2 5882 smodm2 5910 smoel2 5918 tfrlem5 5930 tfrlem8 5934 tfrlem9 5935 tfrlemisucaccv 5939 tfrlemiubacc 5944 tfrexlem 5948 tfri2d 5950 tfri2 5952 rdgivallem 5968 frecsuclemdm 5988 bren 6228 fndmeng 6289 dmaddpi 6423 dmmulpi 6424 shftfn 9425 |
Copyright terms: Public domain | W3C validator |