Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frectfr | GIF version |
Description: Lemma to connect
transfinite recursion theorems with finite recursion.
That is, given the conditions 𝐹 Fn V and 𝐴 ∈ 𝑉 on
frec(𝐹, 𝐴), we want to be able to apply tfri1d 5949 or tfri2d 5950,
and this lemma lets us satisfy hypotheses of those theorems.
(Contributed by Jim Kingdon, 15-Aug-2019.) |
Ref | Expression |
---|---|
frectfr.1 | ⊢ 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) |
Ref | Expression |
---|---|
frectfr | ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → ∀𝑦(Fun 𝐺 ∧ (𝐺‘𝑦) ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2560 | . . . . . . . 8 ⊢ 𝑔 ∈ V | |
2 | 1 | a1i 9 | . . . . . . 7 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑔 ∈ V) |
3 | simpl 102 | . . . . . . 7 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → ∀𝑧(𝐹‘𝑧) ∈ V) | |
4 | simpr 103 | . . . . . . 7 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
5 | 2, 3, 4 | frecabex 5984 | . . . . . 6 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V) |
6 | 5 | ralrimivw 2393 | . . . . 5 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → ∀𝑔 ∈ V {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V) |
7 | frectfr.1 | . . . . . 6 ⊢ 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) | |
8 | 7 | fnmpt 5025 | . . . . 5 ⊢ (∀𝑔 ∈ V {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V → 𝐺 Fn V) |
9 | 6, 8 | syl 14 | . . . 4 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → 𝐺 Fn V) |
10 | vex 2560 | . . . 4 ⊢ 𝑦 ∈ V | |
11 | funfvex 5192 | . . . . 5 ⊢ ((Fun 𝐺 ∧ 𝑦 ∈ dom 𝐺) → (𝐺‘𝑦) ∈ V) | |
12 | 11 | funfni 4999 | . . . 4 ⊢ ((𝐺 Fn V ∧ 𝑦 ∈ V) → (𝐺‘𝑦) ∈ V) |
13 | 9, 10, 12 | sylancl 392 | . . 3 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐺‘𝑦) ∈ V) |
14 | 7 | funmpt2 4939 | . . 3 ⊢ Fun 𝐺 |
15 | 13, 14 | jctil 295 | . 2 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → (Fun 𝐺 ∧ (𝐺‘𝑦) ∈ V)) |
16 | 15 | alrimiv 1754 | 1 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → ∀𝑦(Fun 𝐺 ∧ (𝐺‘𝑦) ∈ V)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 97 ∨ wo 629 ∀wal 1241 = wceq 1243 ∈ wcel 1393 {cab 2026 ∀wral 2306 ∃wrex 2307 Vcvv 2557 ∅c0 3224 ↦ cmpt 3818 suc csuc 4102 ωcom 4313 dom cdm 4345 Fun wfun 4896 Fn wfn 4897 ‘cfv 4902 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-13 1404 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-coll 3872 ax-sep 3875 ax-pow 3927 ax-pr 3944 ax-un 4170 ax-iinf 4311 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-reu 2313 df-rab 2315 df-v 2559 df-sbc 2765 df-csb 2853 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-int 3616 df-iun 3659 df-br 3765 df-opab 3819 df-mpt 3820 df-id 4030 df-iom 4314 df-xp 4351 df-rel 4352 df-cnv 4353 df-co 4354 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fun 4904 df-fn 4905 df-f 4906 df-f1 4907 df-fo 4908 df-f1o 4909 df-fv 4910 |
This theorem is referenced by: frecfnom 5986 frecsuclem1 5987 frecsuclemdm 5988 frecsuclem3 5990 |
Copyright terms: Public domain | W3C validator |