ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemi14d Unicode version

Theorem tfrlemi14d 5947
Description: The domain of recs is all ordinals (lemma for transfinite recursion). (Contributed by Jim Kingdon, 9-Jul-2019.)
Hypotheses
Ref Expression
tfrlemi14d.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlemi14d.2  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
Assertion
Ref Expression
tfrlemi14d  |-  ( ph  ->  dom recs ( F )  =  On )
Distinct variable groups:    x, f, y, A    f, F, x, y    ph, f, y
Allowed substitution hint:    ph( x)

Proof of Theorem tfrlemi14d
Dummy variables  g  h  u  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlemi14d.1 . . . 4  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
21tfrlem8 5934 . . 3  |-  Ord  dom recs ( F )
3 ordsson 4218 . . 3  |-  ( Ord 
dom recs ( F )  ->  dom recs ( F )  C_  On )
42, 3mp1i 10 . 2  |-  ( ph  ->  dom recs ( F ) 
C_  On )
5 tfrlemi14d.2 . . . . . . . 8  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
61, 5tfrlemi1 5946 . . . . . . 7  |-  ( (
ph  /\  z  e.  On )  ->  E. g
( g  Fn  z  /\  A. u  e.  z  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) ) )
75ad2antrr 457 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
8 simplr 482 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  z  e.  On )
9 simprl 483 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  g  Fn  z
)
10 fneq2 4988 . . . . . . . . . . . . 13  |-  ( w  =  z  ->  (
g  Fn  w  <->  g  Fn  z ) )
11 raleq 2505 . . . . . . . . . . . . 13  |-  ( w  =  z  ->  ( A. u  e.  w  ( g `  u
)  =  ( F `
 ( g  |`  u ) )  <->  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u ) ) ) )
1210, 11anbi12d 442 . . . . . . . . . . . 12  |-  ( w  =  z  ->  (
( g  Fn  w  /\  A. u  e.  w  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) )  <-> 
( g  Fn  z  /\  A. u  e.  z  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) ) ) )
1312rspcev 2656 . . . . . . . . . . 11  |-  ( ( z  e.  On  /\  ( g  Fn  z  /\  A. u  e.  z  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) ) )  ->  E. w  e.  On  ( g  Fn  w  /\  A. u  e.  w  ( g `  u )  =  ( F `  ( g  |`  u ) ) ) )
1413adantll 445 . . . . . . . . . 10  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  E. w  e.  On  ( g  Fn  w  /\  A. u  e.  w  ( g `  u
)  =  ( F `
 ( g  |`  u ) ) ) )
15 vex 2560 . . . . . . . . . . 11  |-  g  e. 
_V
161, 15tfrlem3a 5925 . . . . . . . . . 10  |-  ( g  e.  A  <->  E. w  e.  On  ( g  Fn  w  /\  A. u  e.  w  ( g `  u )  =  ( F `  ( g  |`  u ) ) ) )
1714, 16sylibr 137 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  g  e.  A
)
181, 7, 8, 9, 17tfrlemisucaccv 5939 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  e.  A
)
19 vex 2560 . . . . . . . . . . . 12  |-  z  e. 
_V
205tfrlem3-2d 5928 . . . . . . . . . . . . 13  |-  ( ph  ->  ( Fun  F  /\  ( F `  g )  e.  _V ) )
2120simprd 107 . . . . . . . . . . . 12  |-  ( ph  ->  ( F `  g
)  e.  _V )
22 opexg 3964 . . . . . . . . . . . 12  |-  ( ( z  e.  _V  /\  ( F `  g )  e.  _V )  ->  <. z ,  ( F `
 g ) >.  e.  _V )
2319, 21, 22sylancr 393 . . . . . . . . . . 11  |-  ( ph  -> 
<. z ,  ( F `
 g ) >.  e.  _V )
24 snidg 3400 . . . . . . . . . . 11  |-  ( <.
z ,  ( F `
 g ) >.  e.  _V  ->  <. z ,  ( F `  g
) >.  e.  { <. z ,  ( F `  g ) >. } )
25 elun2 3111 . . . . . . . . . . 11  |-  ( <.
z ,  ( F `
 g ) >.  e.  { <. z ,  ( F `  g )
>. }  ->  <. z ,  ( F `  g
) >.  e.  ( g  u.  { <. z ,  ( F `  g ) >. } ) )
2623, 24, 253syl 17 . . . . . . . . . 10  |-  ( ph  -> 
<. z ,  ( F `
 g ) >.  e.  ( g  u.  { <. z ,  ( F `
 g ) >. } ) )
2726ad2antrr 457 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  <. z ,  ( F `  g )
>.  e.  ( g  u. 
{ <. z ,  ( F `  g )
>. } ) )
28 opeldmg 4540 . . . . . . . . . . 11  |-  ( ( z  e.  _V  /\  ( F `  g )  e.  _V )  -> 
( <. z ,  ( F `  g )
>.  e.  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  ->  z  e.  dom  ( g  u. 
{ <. z ,  ( F `  g )
>. } ) ) )
2919, 21, 28sylancr 393 . . . . . . . . . 10  |-  ( ph  ->  ( <. z ,  ( F `  g )
>.  e.  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  ->  z  e.  dom  ( g  u. 
{ <. z ,  ( F `  g )
>. } ) ) )
3029ad2antrr 457 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  ( <. z ,  ( F `  g ) >.  e.  ( g  u.  { <. z ,  ( F `  g ) >. } )  ->  z  e.  dom  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) )
3127, 30mpd 13 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  z  e.  dom  ( g  u.  { <. z ,  ( F `
 g ) >. } ) )
32 dmeq 4535 . . . . . . . . . 10  |-  ( h  =  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  ->  dom  h  =  dom  ( g  u.  { <. z ,  ( F `  g ) >. } ) )
3332eleq2d 2107 . . . . . . . . 9  |-  ( h  =  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  ->  (
z  e.  dom  h  <->  z  e.  dom  ( g  u.  { <. z ,  ( F `  g ) >. } ) ) )
3433rspcev 2656 . . . . . . . 8  |-  ( ( ( g  u.  { <. z ,  ( F `
 g ) >. } )  e.  A  /\  z  e.  dom  ( g  u.  { <. z ,  ( F `
 g ) >. } ) )  ->  E. h  e.  A  z  e.  dom  h )
3518, 31, 34syl2anc 391 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  On )  /\  (
g  Fn  z  /\  A. u  e.  z  ( g `  u )  =  ( F `  ( g  |`  u
) ) ) )  ->  E. h  e.  A  z  e.  dom  h )
366, 35exlimddv 1778 . . . . . 6  |-  ( (
ph  /\  z  e.  On )  ->  E. h  e.  A  z  e.  dom  h )
37 eliun 3661 . . . . . 6  |-  ( z  e.  U_ h  e.  A  dom  h  <->  E. h  e.  A  z  e.  dom  h )
3836, 37sylibr 137 . . . . 5  |-  ( (
ph  /\  z  e.  On )  ->  z  e. 
U_ h  e.  A  dom  h )
3938ex 108 . . . 4  |-  ( ph  ->  ( z  e.  On  ->  z  e.  U_ h  e.  A  dom  h ) )
4039ssrdv 2951 . . 3  |-  ( ph  ->  On  C_  U_ h  e.  A  dom  h )
411recsfval 5931 . . . . 5  |- recs ( F )  =  U. A
4241dmeqi 4536 . . . 4  |-  dom recs ( F )  =  dom  U. A
43 dmuni 4545 . . . 4  |-  dom  U. A  =  U_ h  e.  A  dom  h
4442, 43eqtri 2060 . . 3  |-  dom recs ( F )  =  U_ h  e.  A  dom  h
4540, 44syl6sseqr 2992 . 2  |-  ( ph  ->  On  C_  dom recs ( F ) )
464, 45eqssd 2962 1  |-  ( ph  ->  dom recs ( F )  =  On )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97   A.wal 1241    = wceq 1243    e. wcel 1393   {cab 2026   A.wral 2306   E.wrex 2307   _Vcvv 2557    u. cun 2915    C_ wss 2917   {csn 3375   <.cop 3378   U.cuni 3580   U_ciun 3657   Ord word 4099   Oncon0 4100   dom cdm 4345    |` cres 4347   Fun wfun 4896    Fn wfn 4897   ` cfv 4902  recscrecs 5919
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-recs 5920
This theorem is referenced by:  tfri1d  5949
  Copyright terms: Public domain W3C validator