ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem5 Unicode version

Theorem tfrlem5 5930
Description: Lemma for transfinite recursion. The values of two acceptable functions are the same within their domains. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 24-May-2019.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem5  |-  ( ( g  e.  A  /\  h  e.  A )  ->  ( ( x g u  /\  x h v )  ->  u  =  v ) )
Distinct variable groups:    f, g, x, y, h, u, v, F    A, g, h
Allowed substitution hints:    A( x, y, v, u, f)

Proof of Theorem tfrlem5
Dummy variables  z  a  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . 3  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
2 vex 2560 . . 3  |-  g  e. 
_V
31, 2tfrlem3a 5925 . 2  |-  ( g  e.  A  <->  E. z  e.  On  ( g  Fn  z  /\  A. a  e.  z  ( g `  a )  =  ( F `  ( g  |`  a ) ) ) )
4 vex 2560 . . 3  |-  h  e. 
_V
51, 4tfrlem3a 5925 . 2  |-  ( h  e.  A  <->  E. w  e.  On  ( h  Fn  w  /\  A. a  e.  w  ( h `  a )  =  ( F `  ( h  |`  a ) ) ) )
6 reeanv 2479 . . 3  |-  ( E. z  e.  On  E. w  e.  On  (
( g  Fn  z  /\  A. a  e.  z  ( g `  a
)  =  ( F `
 ( g  |`  a ) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a )  =  ( F `  ( h  |`  a ) ) ) )  <->  ( E. z  e.  On  ( g  Fn  z  /\  A. a  e.  z  ( g `  a )  =  ( F `  ( g  |`  a ) ) )  /\  E. w  e.  On  ( h  Fn  w  /\  A. a  e.  w  ( h `  a )  =  ( F `  ( h  |`  a ) ) ) ) )
7 simp2ll 971 . . . . . . . . . 10  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  g  Fn  z
)
8 simp3l 932 . . . . . . . . . 10  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  x g u )
9 fnbr 5001 . . . . . . . . . 10  |-  ( ( g  Fn  z  /\  x g u )  ->  x  e.  z )
107, 8, 9syl2anc 391 . . . . . . . . 9  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  x  e.  z )
11 simp2rl 973 . . . . . . . . . 10  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  h  Fn  w
)
12 simp3r 933 . . . . . . . . . 10  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  x h v )
13 fnbr 5001 . . . . . . . . . 10  |-  ( ( h  Fn  w  /\  x h v )  ->  x  e.  w
)
1411, 12, 13syl2anc 391 . . . . . . . . 9  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  x  e.  w
)
15 elin 3126 . . . . . . . . 9  |-  ( x  e.  ( z  i^i  w )  <->  ( x  e.  z  /\  x  e.  w ) )
1610, 14, 15sylanbrc 394 . . . . . . . 8  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  x  e.  ( z  i^i  w ) )
17 onin 4123 . . . . . . . . . 10  |-  ( ( z  e.  On  /\  w  e.  On )  ->  ( z  i^i  w
)  e.  On )
18173ad2ant1 925 . . . . . . . . 9  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  ( z  i^i  w )  e.  On )
19 fnfun 4996 . . . . . . . . . . 11  |-  ( g  Fn  z  ->  Fun  g )
207, 19syl 14 . . . . . . . . . 10  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  Fun  g )
21 inss1 3157 . . . . . . . . . . 11  |-  ( z  i^i  w )  C_  z
22 fndm 4998 . . . . . . . . . . . 12  |-  ( g  Fn  z  ->  dom  g  =  z )
237, 22syl 14 . . . . . . . . . . 11  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  dom  g  =  z )
2421, 23syl5sseqr 2994 . . . . . . . . . 10  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  ( z  i^i  w )  C_  dom  g )
2520, 24jca 290 . . . . . . . . 9  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  ( Fun  g  /\  ( z  i^i  w
)  C_  dom  g ) )
26 fnfun 4996 . . . . . . . . . . 11  |-  ( h  Fn  w  ->  Fun  h )
2711, 26syl 14 . . . . . . . . . 10  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  Fun  h )
28 inss2 3158 . . . . . . . . . . 11  |-  ( z  i^i  w )  C_  w
29 fndm 4998 . . . . . . . . . . . 12  |-  ( h  Fn  w  ->  dom  h  =  w )
3011, 29syl 14 . . . . . . . . . . 11  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  dom  h  =  w )
3128, 30syl5sseqr 2994 . . . . . . . . . 10  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  ( z  i^i  w )  C_  dom  h )
3227, 31jca 290 . . . . . . . . 9  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  ( Fun  h  /\  ( z  i^i  w
)  C_  dom  h ) )
33 simp2lr 972 . . . . . . . . . 10  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  A. a  e.  z  ( g `  a
)  =  ( F `
 ( g  |`  a ) ) )
34 ssralv 3004 . . . . . . . . . 10  |-  ( ( z  i^i  w ) 
C_  z  ->  ( A. a  e.  z 
( g `  a
)  =  ( F `
 ( g  |`  a ) )  ->  A. a  e.  (
z  i^i  w )
( g `  a
)  =  ( F `
 ( g  |`  a ) ) ) )
3521, 33, 34mpsyl 59 . . . . . . . . 9  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  A. a  e.  ( z  i^i  w ) ( g `  a
)  =  ( F `
 ( g  |`  a ) ) )
36 simp2rr 974 . . . . . . . . . 10  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) )
37 ssralv 3004 . . . . . . . . . 10  |-  ( ( z  i^i  w ) 
C_  w  ->  ( A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) )  ->  A. a  e.  (
z  i^i  w )
( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )
3828, 36, 37mpsyl 59 . . . . . . . . 9  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  A. a  e.  ( z  i^i  w ) ( h `  a
)  =  ( F `
 ( h  |`  a ) ) )
3918, 25, 32, 35, 38tfrlem1 5923 . . . . . . . 8  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  A. a  e.  ( z  i^i  w ) ( g `  a
)  =  ( h `
 a ) )
40 fveq2 5178 . . . . . . . . . 10  |-  ( a  =  x  ->  (
g `  a )  =  ( g `  x ) )
41 fveq2 5178 . . . . . . . . . 10  |-  ( a  =  x  ->  (
h `  a )  =  ( h `  x ) )
4240, 41eqeq12d 2054 . . . . . . . . 9  |-  ( a  =  x  ->  (
( g `  a
)  =  ( h `
 a )  <->  ( g `  x )  =  ( h `  x ) ) )
4342rspcv 2652 . . . . . . . 8  |-  ( x  e.  ( z  i^i  w )  ->  ( A. a  e.  (
z  i^i  w )
( g `  a
)  =  ( h `
 a )  -> 
( g `  x
)  =  ( h `
 x ) ) )
4416, 39, 43sylc 56 . . . . . . 7  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  ( g `  x )  =  ( h `  x ) )
45 funbrfv 5212 . . . . . . . 8  |-  ( Fun  g  ->  ( x
g u  ->  (
g `  x )  =  u ) )
4620, 8, 45sylc 56 . . . . . . 7  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  ( g `  x )  =  u )
47 funbrfv 5212 . . . . . . . 8  |-  ( Fun  h  ->  ( x h v  ->  (
h `  x )  =  v ) )
4827, 12, 47sylc 56 . . . . . . 7  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  ( h `  x )  =  v )
4944, 46, 483eqtr3d 2080 . . . . . 6  |-  ( ( ( z  e.  On  /\  w  e.  On )  /\  ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  /\  ( x g u  /\  x h v ) )  ->  u  =  v )
50493exp 1103 . . . . 5  |-  ( ( z  e.  On  /\  w  e.  On )  ->  ( ( ( g  Fn  z  /\  A. a  e.  z  (
g `  a )  =  ( F `  ( g  |`  a
) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a
)  =  ( F `
 ( h  |`  a ) ) ) )  ->  ( (
x g u  /\  x h v )  ->  u  =  v ) ) )
5150rexlimdva 2433 . . . 4  |-  ( z  e.  On  ->  ( E. w  e.  On  ( ( g  Fn  z  /\  A. a  e.  z  ( g `  a )  =  ( F `  ( g  |`  a ) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a )  =  ( F `  ( h  |`  a ) ) ) )  ->  ( (
x g u  /\  x h v )  ->  u  =  v ) ) )
5251rexlimiv 2427 . . 3  |-  ( E. z  e.  On  E. w  e.  On  (
( g  Fn  z  /\  A. a  e.  z  ( g `  a
)  =  ( F `
 ( g  |`  a ) ) )  /\  ( h  Fn  w  /\  A. a  e.  w  ( h `  a )  =  ( F `  ( h  |`  a ) ) ) )  ->  ( (
x g u  /\  x h v )  ->  u  =  v ) )
536, 52sylbir 125 . 2  |-  ( ( E. z  e.  On  ( g  Fn  z  /\  A. a  e.  z  ( g `  a
)  =  ( F `
 ( g  |`  a ) ) )  /\  E. w  e.  On  ( h  Fn  w  /\  A. a  e.  w  ( h `  a )  =  ( F `  ( h  |`  a ) ) ) )  ->  ( (
x g u  /\  x h v )  ->  u  =  v ) )
543, 5, 53syl2anb 275 1  |-  ( ( g  e.  A  /\  h  e.  A )  ->  ( ( x g u  /\  x h v )  ->  u  =  v ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    /\ w3a 885    = wceq 1243    e. wcel 1393   {cab 2026   A.wral 2306   E.wrex 2307    i^i cin 2916    C_ wss 2917   class class class wbr 3764   Oncon0 4100   dom cdm 4345    |` cres 4347   Fun wfun 4896    Fn wfn 4897   ` cfv 4902
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-setind 4262
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-res 4357  df-iota 4867  df-fun 4904  df-fn 4905  df-fv 4910
This theorem is referenced by:  tfrlem7  5933  tfrexlem  5948
  Copyright terms: Public domain W3C validator