ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzuzb Unicode version

Theorem elfzuzb 8884
Description: Membership in a finite set of sequential integers in terms of sets of upper integers. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Assertion
Ref Expression
elfzuzb  |-  ( K  e.  ( M ... N )  <->  ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  K ) ) )

Proof of Theorem elfzuzb
StepHypRef Expression
1 df-3an 887 . . 3  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( (
( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( M  <_  K  /\  K  <_  N ) ) )
2 an6 1216 . . 3  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K )  /\  ( K  e.  ZZ  /\  N  e.  ZZ  /\  K  <_  N ) )  <-> 
( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) ) )
3 df-3an 887 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ ) )
4 anandir 525 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  K  e.  ZZ ) 
<->  ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( N  e.  ZZ  /\  K  e.  ZZ ) ) )
5 ancom 253 . . . . . 6  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  <->  ( K  e.  ZZ  /\  N  e.  ZZ )
)
65anbi2i 430 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( N  e.  ZZ  /\  K  e.  ZZ ) )  <->  ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ ) ) )
73, 4, 63bitri 195 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  <->  ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ ) ) )
87anbi1i 431 . . 3  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( ( ( M  e.  ZZ  /\  K  e.  ZZ )  /\  ( K  e.  ZZ  /\  N  e.  ZZ ) )  /\  ( M  <_  K  /\  K  <_  N ) ) )
91, 2, 83bitr4ri 202 . 2  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) )  <->  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K )  /\  ( K  e.  ZZ  /\  N  e.  ZZ  /\  K  <_  N ) ) )
10 elfz2 8881 . 2  |-  ( K  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M  <_  K  /\  K  <_  N ) ) )
11 eluz2 8479 . . 3  |-  ( K  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K ) )
12 eluz2 8479 . . 3  |-  ( N  e.  ( ZZ>= `  K
)  <->  ( K  e.  ZZ  /\  N  e.  ZZ  /\  K  <_  N ) )
1311, 12anbi12i 433 . 2  |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K )
)  <->  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  M  <_  K )  /\  ( K  e.  ZZ  /\  N  e.  ZZ  /\  K  <_  N ) ) )
149, 10, 133bitr4i 201 1  |-  ( K  e.  ( M ... N )  <->  ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>=
`  K ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98    /\ w3a 885    e. wcel 1393   class class class wbr 3764   ` cfv 4902  (class class class)co 5512    <_ cle 7061   ZZcz 8245   ZZ>=cuz 8473   ...cfz 8874
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-setind 4262  ax-cnex 6975  ax-resscn 6976
This theorem depends on definitions:  df-bi 110  df-3or 886  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-sbc 2765  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-neg 7185  df-z 8246  df-uz 8474  df-fz 8875
This theorem is referenced by:  eluzfz  8885  elfzuz  8886  elfzuz3  8887  elfzuz2  8893  peano2fzr  8901  fzsplit2  8914  fzass4  8925  fzss1  8926  fzss2  8927  fzp1elp1  8937  fznn  8951  elfz2nn0  8973  elfzofz  9018  fzosplitsnm1  9065  fzofzp1b  9084  fzosplitsn  9089  iseqfveq2  9228  monoord  9235
  Copyright terms: Public domain W3C validator