ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvpom Unicode version

Theorem cnvpom 4860
Description: The converse of a partial order relation is a partial order relation. (Contributed by NM, 15-Jun-2005.)
Assertion
Ref Expression
cnvpom  |-  ( E. x  x  e.  A  ->  ( R  Po  A  <->  `' R  Po  A ) )
Distinct variable groups:    x, A    x, R

Proof of Theorem cnvpom
Dummy variables  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.26 2441 . . . . . . 7  |-  ( A. w  e.  A  ( A. z  e.  A  -.  w R w  /\  A. z  e.  A  ( ( w R y  /\  y R z )  ->  w R
z ) )  <->  ( A. w  e.  A  A. z  e.  A  -.  w R w  /\  A. w  e.  A  A. z  e.  A  (
( w R y  /\  y R z )  ->  w R
z ) ) )
2 ralidm 3321 . . . . . . . . 9  |-  ( A. w  e.  A  A. w  e.  A  -.  w R w  <->  A. w  e.  A  -.  w R w )
3 r19.3rmv 3312 . . . . . . . . . 10  |-  ( E. x  x  e.  A  ->  ( -.  w R w  <->  A. z  e.  A  -.  w R w ) )
43ralbidv 2326 . . . . . . . . 9  |-  ( E. x  x  e.  A  ->  ( A. w  e.  A  -.  w R w  <->  A. w  e.  A  A. z  e.  A  -.  w R w ) )
52, 4syl5rbb 182 . . . . . . . 8  |-  ( E. x  x  e.  A  ->  ( A. w  e.  A  A. z  e.  A  -.  w R w  <->  A. w  e.  A  A. w  e.  A  -.  w R w ) )
65anbi1d 438 . . . . . . 7  |-  ( E. x  x  e.  A  ->  ( ( A. w  e.  A  A. z  e.  A  -.  w R w  /\  A. w  e.  A  A. z  e.  A  ( (
w R y  /\  y R z )  ->  w R z ) )  <-> 
( A. w  e.  A  A. w  e.  A  -.  w R w  /\  A. w  e.  A  A. z  e.  A  ( (
w R y  /\  y R z )  ->  w R z ) ) ) )
71, 6syl5bb 181 . . . . . 6  |-  ( E. x  x  e.  A  ->  ( A. w  e.  A  ( A. z  e.  A  -.  w R w  /\  A. z  e.  A  ( (
w R y  /\  y R z )  ->  w R z ) )  <-> 
( A. w  e.  A  A. w  e.  A  -.  w R w  /\  A. w  e.  A  A. z  e.  A  ( (
w R y  /\  y R z )  ->  w R z ) ) ) )
8 r19.26 2441 . . . . . . 7  |-  ( A. z  e.  A  ( -.  w R w  /\  ( ( w R y  /\  y R z )  ->  w R z ) )  <-> 
( A. z  e.  A  -.  w R w  /\  A. z  e.  A  ( (
w R y  /\  y R z )  ->  w R z ) ) )
98ralbii 2330 . . . . . 6  |-  ( A. w  e.  A  A. z  e.  A  ( -.  w R w  /\  ( ( w R y  /\  y R z )  ->  w R z ) )  <->  A. w  e.  A  ( A. z  e.  A  -.  w R w  /\  A. z  e.  A  ( ( w R y  /\  y R z )  ->  w R
z ) ) )
10 r19.26 2441 . . . . . 6  |-  ( A. w  e.  A  ( A. w  e.  A  -.  w R w  /\  A. z  e.  A  ( ( w R y  /\  y R z )  ->  w R
z ) )  <->  ( A. w  e.  A  A. w  e.  A  -.  w R w  /\  A. w  e.  A  A. z  e.  A  (
( w R y  /\  y R z )  ->  w R
z ) ) )
117, 9, 103bitr4g 212 . . . . 5  |-  ( E. x  x  e.  A  ->  ( A. w  e.  A  A. z  e.  A  ( -.  w R w  /\  (
( w R y  /\  y R z )  ->  w R
z ) )  <->  A. w  e.  A  ( A. w  e.  A  -.  w R w  /\  A. z  e.  A  (
( w R y  /\  y R z )  ->  w R
z ) ) ) )
12 r19.26 2441 . . . . . . . 8  |-  ( A. z  e.  A  ( -.  z `' R z  /\  ( ( z `' R y  /\  y `' R w )  -> 
z `' R w ) )  <->  ( A. z  e.  A  -.  z `' R z  /\  A. z  e.  A  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) )
13 vex 2560 . . . . . . . . . . . . 13  |-  z  e. 
_V
1413, 13brcnv 4518 . . . . . . . . . . . 12  |-  ( z `' R z  <->  z R
z )
15 id 19 . . . . . . . . . . . . 13  |-  ( z  =  w  ->  z  =  w )
1615, 15breq12d 3777 . . . . . . . . . . . 12  |-  ( z  =  w  ->  (
z R z  <->  w R w ) )
1714, 16syl5bb 181 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
z `' R z  <-> 
w R w ) )
1817notbid 592 . . . . . . . . . 10  |-  ( z  =  w  ->  ( -.  z `' R z  <->  -.  w R w ) )
1918cbvralv 2533 . . . . . . . . 9  |-  ( A. z  e.  A  -.  z `' R z  <->  A. w  e.  A  -.  w R w )
20 vex 2560 . . . . . . . . . . . . 13  |-  y  e. 
_V
2113, 20brcnv 4518 . . . . . . . . . . . 12  |-  ( z `' R y  <->  y R
z )
22 vex 2560 . . . . . . . . . . . . 13  |-  w  e. 
_V
2320, 22brcnv 4518 . . . . . . . . . . . 12  |-  ( y `' R w  <->  w R
y )
2421, 23anbi12ci 434 . . . . . . . . . . 11  |-  ( ( z `' R y  /\  y `' R w )  <->  ( w R y  /\  y R z ) )
2513, 22brcnv 4518 . . . . . . . . . . 11  |-  ( z `' R w  <->  w R
z )
2624, 25imbi12i 228 . . . . . . . . . 10  |-  ( ( ( z `' R
y  /\  y `' R w )  -> 
z `' R w )  <->  ( ( w R y  /\  y R z )  ->  w R z ) )
2726ralbii 2330 . . . . . . . . 9  |-  ( A. z  e.  A  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w )  <->  A. z  e.  A  ( ( w R y  /\  y R z )  ->  w R z ) )
2819, 27anbi12i 433 . . . . . . . 8  |-  ( ( A. z  e.  A  -.  z `' R z  /\  A. z  e.  A  ( ( z `' R y  /\  y `' R w )  -> 
z `' R w ) )  <->  ( A. w  e.  A  -.  w R w  /\  A. z  e.  A  (
( w R y  /\  y R z )  ->  w R
z ) ) )
2912, 28bitr2i 174 . . . . . . 7  |-  ( ( A. w  e.  A  -.  w R w  /\  A. z  e.  A  ( ( w R y  /\  y R z )  ->  w R
z ) )  <->  A. z  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) )
3029ralbii 2330 . . . . . 6  |-  ( A. w  e.  A  ( A. w  e.  A  -.  w R w  /\  A. z  e.  A  ( ( w R y  /\  y R z )  ->  w R
z ) )  <->  A. w  e.  A  A. z  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) )
31 ralcom 2473 . . . . . 6  |-  ( A. w  e.  A  A. z  e.  A  ( -.  z `' R z  /\  ( ( z `' R y  /\  y `' R w )  -> 
z `' R w ) )  <->  A. z  e.  A  A. w  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) )
3230, 31bitri 173 . . . . 5  |-  ( A. w  e.  A  ( A. w  e.  A  -.  w R w  /\  A. z  e.  A  ( ( w R y  /\  y R z )  ->  w R
z ) )  <->  A. z  e.  A  A. w  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) )
3311, 32syl6bb 185 . . . 4  |-  ( E. x  x  e.  A  ->  ( A. w  e.  A  A. z  e.  A  ( -.  w R w  /\  (
( w R y  /\  y R z )  ->  w R
z ) )  <->  A. z  e.  A  A. w  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) ) )
3433ralbidv 2326 . . 3  |-  ( E. x  x  e.  A  ->  ( A. y  e.  A  A. w  e.  A  A. z  e.  A  ( -.  w R w  /\  (
( w R y  /\  y R z )  ->  w R
z ) )  <->  A. y  e.  A  A. z  e.  A  A. w  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) ) )
35 ralcom 2473 . . 3  |-  ( A. w  e.  A  A. y  e.  A  A. z  e.  A  ( -.  w R w  /\  ( ( w R y  /\  y R z )  ->  w R z ) )  <->  A. y  e.  A  A. w  e.  A  A. z  e.  A  ( -.  w R w  /\  ( ( w R y  /\  y R z )  ->  w R z ) ) )
36 ralcom 2473 . . 3  |-  ( A. z  e.  A  A. y  e.  A  A. w  e.  A  ( -.  z `' R z  /\  ( ( z `' R y  /\  y `' R w )  -> 
z `' R w ) )  <->  A. y  e.  A  A. z  e.  A  A. w  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) )
3734, 35, 363bitr4g 212 . 2  |-  ( E. x  x  e.  A  ->  ( A. w  e.  A  A. y  e.  A  A. z  e.  A  ( -.  w R w  /\  (
( w R y  /\  y R z )  ->  w R
z ) )  <->  A. z  e.  A  A. y  e.  A  A. w  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) ) )
38 df-po 4033 . 2  |-  ( R  Po  A  <->  A. w  e.  A  A. y  e.  A  A. z  e.  A  ( -.  w R w  /\  (
( w R y  /\  y R z )  ->  w R
z ) ) )
39 df-po 4033 . 2  |-  ( `' R  Po  A  <->  A. z  e.  A  A. y  e.  A  A. w  e.  A  ( -.  z `' R z  /\  (
( z `' R
y  /\  y `' R w )  -> 
z `' R w ) ) )
4037, 38, 393bitr4g 212 1  |-  ( E. x  x  e.  A  ->  ( R  Po  A  <->  `' R  Po  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 97    <-> wb 98   E.wex 1381    e. wcel 1393   A.wral 2306   class class class wbr 3764    Po wpo 4031   `'ccnv 4344
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-po 4033  df-cnv 4353
This theorem is referenced by:  cnvsom  4861
  Copyright terms: Public domain W3C validator