ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0ref Unicode version

Theorem enq0ref 6531
Description: The equivalence relation for non-negative fractions is reflexive. Lemma for enq0er 6533. (Contributed by Jim Kingdon, 14-Nov-2019.)
Assertion
Ref Expression
enq0ref  |-  ( f  e.  ( om  X.  N. )  <->  f ~Q0  f )

Proof of Theorem enq0ref
Dummy variables  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elxpi 4361 . . . . . 6  |-  ( f  e.  ( om  X.  N. )  ->  E. z E. w ( f  = 
<. z ,  w >.  /\  ( z  e.  om  /\  w  e.  N. )
) )
2 elxpi 4361 . . . . . 6  |-  ( f  e.  ( om  X.  N. )  ->  E. v E. u ( f  = 
<. v ,  u >.  /\  ( v  e.  om  /\  u  e.  N. )
) )
3 ee4anv 1809 . . . . . 6  |-  ( E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  (
z  e.  om  /\  w  e.  N. )
)  /\  ( f  =  <. v ,  u >.  /\  ( v  e. 
om  /\  u  e.  N. ) ) )  <->  ( E. z E. w ( f  =  <. z ,  w >.  /\  ( z  e. 
om  /\  w  e.  N. ) )  /\  E. v E. u ( f  =  <. v ,  u >.  /\  ( v  e. 
om  /\  u  e.  N. ) ) ) )
41, 2, 3sylanbrc 394 . . . . 5  |-  ( f  e.  ( om  X.  N. )  ->  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  ( z  e. 
om  /\  w  e.  N. ) )  /\  (
f  =  <. v ,  u >.  /\  (
v  e.  om  /\  u  e.  N. )
) ) )
5 eqtr2 2058 . . . . . . . . . . . 12  |-  ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  ->  <. z ,  w >.  =  <. v ,  u >. )
6 vex 2560 . . . . . . . . . . . . 13  |-  z  e. 
_V
7 vex 2560 . . . . . . . . . . . . 13  |-  w  e. 
_V
86, 7opth 3974 . . . . . . . . . . . 12  |-  ( <.
z ,  w >.  = 
<. v ,  u >.  <->  (
z  =  v  /\  w  =  u )
)
95, 8sylib 127 . . . . . . . . . . 11  |-  ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  ->  ( z  =  v  /\  w  =  u ) )
10 oveq1 5519 . . . . . . . . . . . 12  |-  ( z  =  v  ->  (
z  .o  u )  =  ( v  .o  u ) )
11 oveq2 5520 . . . . . . . . . . . . 13  |-  ( u  =  w  ->  (
v  .o  u )  =  ( v  .o  w ) )
1211equcoms 1594 . . . . . . . . . . . 12  |-  ( w  =  u  ->  (
v  .o  u )  =  ( v  .o  w ) )
1310, 12sylan9eq 2092 . . . . . . . . . . 11  |-  ( ( z  =  v  /\  w  =  u )  ->  ( z  .o  u
)  =  ( v  .o  w ) )
149, 13syl 14 . . . . . . . . . 10  |-  ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  ->  ( z  .o  u )  =  ( v  .o  w ) )
1514ancli 306 . . . . . . . . 9  |-  ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  ->  ( (
f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( v  .o  w
) ) )
1615ad2ant2r 478 . . . . . . . 8  |-  ( ( ( f  =  <. z ,  w >.  /\  (
z  e.  om  /\  w  e.  N. )
)  /\  ( f  =  <. v ,  u >.  /\  ( v  e. 
om  /\  u  e.  N. ) ) )  -> 
( ( f  = 
<. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( v  .o  w ) ) )
17 pinn 6407 . . . . . . . . . . . . . 14  |-  ( w  e.  N.  ->  w  e.  om )
18 nnmcom 6068 . . . . . . . . . . . . . 14  |-  ( ( v  e.  om  /\  w  e.  om )  ->  ( v  .o  w
)  =  ( w  .o  v ) )
1917, 18sylan2 270 . . . . . . . . . . . . 13  |-  ( ( v  e.  om  /\  w  e.  N. )  ->  ( v  .o  w
)  =  ( w  .o  v ) )
2019eqeq2d 2051 . . . . . . . . . . . 12  |-  ( ( v  e.  om  /\  w  e.  N. )  ->  ( ( z  .o  u )  =  ( v  .o  w )  <-> 
( z  .o  u
)  =  ( w  .o  v ) ) )
2120ancoms 255 . . . . . . . . . . 11  |-  ( ( w  e.  N.  /\  v  e.  om )  ->  ( ( z  .o  u )  =  ( v  .o  w )  <-> 
( z  .o  u
)  =  ( w  .o  v ) ) )
2221ad2ant2lr 479 . . . . . . . . . 10  |-  ( ( ( z  e.  om  /\  w  e.  N. )  /\  ( v  e.  om  /\  u  e.  N. )
)  ->  ( (
z  .o  u )  =  ( v  .o  w )  <->  ( z  .o  u )  =  ( w  .o  v ) ) )
2322ad2ant2l 477 . . . . . . . . 9  |-  ( ( ( f  =  <. z ,  w >.  /\  (
z  e.  om  /\  w  e.  N. )
)  /\  ( f  =  <. v ,  u >.  /\  ( v  e. 
om  /\  u  e.  N. ) ) )  -> 
( ( z  .o  u )  =  ( v  .o  w )  <-> 
( z  .o  u
)  =  ( w  .o  v ) ) )
2423anbi2d 437 . . . . . . . 8  |-  ( ( ( f  =  <. z ,  w >.  /\  (
z  e.  om  /\  w  e.  N. )
)  /\  ( f  =  <. v ,  u >.  /\  ( v  e. 
om  /\  u  e.  N. ) ) )  -> 
( ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( v  .o  w ) )  <-> 
( ( f  = 
<. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( w  .o  v ) ) ) )
2516, 24mpbid 135 . . . . . . 7  |-  ( ( ( f  =  <. z ,  w >.  /\  (
z  e.  om  /\  w  e.  N. )
)  /\  ( f  =  <. v ,  u >.  /\  ( v  e. 
om  /\  u  e.  N. ) ) )  -> 
( ( f  = 
<. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( w  .o  v ) ) )
26252eximi 1492 . . . . . 6  |-  ( E. v E. u ( ( f  =  <. z ,  w >.  /\  (
z  e.  om  /\  w  e.  N. )
)  /\  ( f  =  <. v ,  u >.  /\  ( v  e. 
om  /\  u  e.  N. ) ) )  ->  E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) )
27262eximi 1492 . . . . 5  |-  ( E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  (
z  e.  om  /\  w  e.  N. )
)  /\  ( f  =  <. v ,  u >.  /\  ( v  e. 
om  /\  u  e.  N. ) ) )  ->  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) )
284, 27syl 14 . . . 4  |-  ( f  e.  ( om  X.  N. )  ->  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )
2928ancli 306 . . 3  |-  ( f  e.  ( om  X.  N. )  ->  ( f  e.  ( om  X.  N. )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
30 vex 2560 . . . . 5  |-  f  e. 
_V
31 eleq1 2100 . . . . . . 7  |-  ( x  =  f  ->  (
x  e.  ( om 
X.  N. )  <->  f  e.  ( om  X.  N. )
) )
3231anbi1d 438 . . . . . 6  |-  ( x  =  f  ->  (
( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  <-> 
( f  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) ) ) )
33 eqeq1 2046 . . . . . . . . 9  |-  ( x  =  f  ->  (
x  =  <. z ,  w >.  <->  f  =  <. z ,  w >. )
)
3433anbi1d 438 . . . . . . . 8  |-  ( x  =  f  ->  (
( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  ( f  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. ) ) )
3534anbi1d 438 . . . . . . 7  |-  ( x  =  f  ->  (
( ( x  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( w  .o  v ) )  <->  ( (
f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) ) )
36354exbidv 1750 . . . . . 6  |-  ( x  =  f  ->  ( E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) )  <->  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
3732, 36anbi12d 442 . . . . 5  |-  ( x  =  f  ->  (
( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( f  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) ) )
38 eleq1 2100 . . . . . . 7  |-  ( y  =  f  ->  (
y  e.  ( om 
X.  N. )  <->  f  e.  ( om  X.  N. )
) )
3938anbi2d 437 . . . . . 6  |-  ( y  =  f  ->  (
( f  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  <-> 
( f  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) ) ) )
40 eqeq1 2046 . . . . . . . . 9  |-  ( y  =  f  ->  (
y  =  <. v ,  u >.  <->  f  =  <. v ,  u >. )
)
4140anbi2d 437 . . . . . . . 8  |-  ( y  =  f  ->  (
( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  ( f  = 
<. z ,  w >.  /\  f  =  <. v ,  u >. ) ) )
4241anbi1d 438 . . . . . . 7  |-  ( y  =  f  ->  (
( ( f  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( w  .o  v ) )  <->  ( (
f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) ) )
43424exbidv 1750 . . . . . 6  |-  ( y  =  f  ->  ( E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) )  <->  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
4439, 43anbi12d 442 . . . . 5  |-  ( y  =  f  ->  (
( ( f  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( f  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) ) )
45 df-enq0 6522 . . . . 5  |- ~Q0  =  { <. x ,  y >.  |  ( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) }
4630, 30, 37, 44, 45brab 4009 . . . 4  |-  ( f ~Q0  f  <->  ( ( f  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
47 anidm 376 . . . . 5  |-  ( ( f  e.  ( om 
X.  N. )  /\  f  e.  ( om  X.  N. ) )  <->  f  e.  ( om  X.  N. )
)
4847anbi1i 431 . . . 4  |-  ( ( ( f  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( f  e.  ( om  X.  N. )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
4946, 48bitri 173 . . 3  |-  ( f ~Q0  f  <->  ( f  e.  ( om 
X.  N. )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
5029, 49sylibr 137 . 2  |-  ( f  e.  ( om  X.  N. )  ->  f ~Q0  f )
5149simplbi 259 . 2  |-  ( f ~Q0  f  ->  f  e.  ( om 
X.  N. ) )
5250, 51impbii 117 1  |-  ( f  e.  ( om  X.  N. )  <->  f ~Q0  f )
Colors of variables: wff set class
Syntax hints:    /\ wa 97    <-> wb 98    = wceq 1243   E.wex 1381    e. wcel 1393   <.cop 3378   class class class wbr 3764   omcom 4313    X. cxp 4343  (class class class)co 5512    .o comu 5999   N.cnpi 6370   ~Q0 ceq0 6384
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-oadd 6005  df-omul 6006  df-ni 6402  df-enq0 6522
This theorem is referenced by:  enq0er  6533
  Copyright terms: Public domain W3C validator