ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enq0sym Unicode version

Theorem enq0sym 6530
Description: The equivalence relation for non-negative fractions is symmetric. Lemma for enq0er 6533. (Contributed by Jim Kingdon, 14-Nov-2019.)
Assertion
Ref Expression
enq0sym  |-  ( f ~Q0  g  ->  g ~Q0  f )

Proof of Theorem enq0sym
Dummy variables  a  b  c  d  u  v  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2560 . . . . . . . 8  |-  f  e. 
_V
2 vex 2560 . . . . . . . 8  |-  g  e. 
_V
3 eleq1 2100 . . . . . . . . . 10  |-  ( x  =  f  ->  (
x  e.  ( om 
X.  N. )  <->  f  e.  ( om  X.  N. )
) )
43anbi1d 438 . . . . . . . . 9  |-  ( x  =  f  ->  (
( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  <-> 
( f  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) ) ) )
5 eqeq1 2046 . . . . . . . . . . . 12  |-  ( x  =  f  ->  (
x  =  <. z ,  w >.  <->  f  =  <. z ,  w >. )
)
65anbi1d 438 . . . . . . . . . . 11  |-  ( x  =  f  ->  (
( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  ( f  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. ) ) )
76anbi1d 438 . . . . . . . . . 10  |-  ( x  =  f  ->  (
( ( x  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( w  .o  v ) )  <->  ( (
f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) ) )
874exbidv 1750 . . . . . . . . 9  |-  ( x  =  f  ->  ( E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) )  <->  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
94, 8anbi12d 442 . . . . . . . 8  |-  ( x  =  f  ->  (
( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( f  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) ) )
10 eleq1 2100 . . . . . . . . . 10  |-  ( y  =  g  ->  (
y  e.  ( om 
X.  N. )  <->  g  e.  ( om  X.  N. )
) )
1110anbi2d 437 . . . . . . . . 9  |-  ( y  =  g  ->  (
( f  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  <-> 
( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) ) ) )
12 eqeq1 2046 . . . . . . . . . . . 12  |-  ( y  =  g  ->  (
y  =  <. v ,  u >.  <->  g  =  <. v ,  u >. )
)
1312anbi2d 437 . . . . . . . . . . 11  |-  ( y  =  g  ->  (
( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  ( f  = 
<. z ,  w >.  /\  g  =  <. v ,  u >. ) ) )
1413anbi1d 438 . . . . . . . . . 10  |-  ( y  =  g  ->  (
( ( f  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( w  .o  v ) )  <->  ( (
f  =  <. z ,  w >.  /\  g  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) ) )
15144exbidv 1750 . . . . . . . . 9  |-  ( y  =  g  ->  ( E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) )  <->  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  g  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
1611, 15anbi12d 442 . . . . . . . 8  |-  ( y  =  g  ->  (
( ( f  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  g  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) ) )
17 df-enq0 6522 . . . . . . . 8  |- ~Q0  =  { <. x ,  y >.  |  ( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) }
181, 2, 9, 16, 17brab 4009 . . . . . . 7  |-  ( f ~Q0  g  <->  ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  g  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
1918biimpi 113 . . . . . 6  |-  ( f ~Q0  g  ->  ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  g  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
20 opeq12 3551 . . . . . . . . . . 11  |-  ( ( z  =  a  /\  w  =  b )  -> 
<. z ,  w >.  = 
<. a ,  b >.
)
2120eqeq2d 2051 . . . . . . . . . 10  |-  ( ( z  =  a  /\  w  =  b )  ->  ( f  =  <. z ,  w >.  <->  f  =  <. a ,  b >.
) )
2221anbi1d 438 . . . . . . . . 9  |-  ( ( z  =  a  /\  w  =  b )  ->  ( ( f  = 
<. z ,  w >.  /\  g  =  <. v ,  u >. )  <->  ( f  =  <. a ,  b
>.  /\  g  =  <. v ,  u >. )
) )
23 simpl 102 . . . . . . . . . . 11  |-  ( ( z  =  a  /\  w  =  b )  ->  z  =  a )
2423oveq1d 5527 . . . . . . . . . 10  |-  ( ( z  =  a  /\  w  =  b )  ->  ( z  .o  u
)  =  ( a  .o  u ) )
25 simpr 103 . . . . . . . . . . 11  |-  ( ( z  =  a  /\  w  =  b )  ->  w  =  b )
2625oveq1d 5527 . . . . . . . . . 10  |-  ( ( z  =  a  /\  w  =  b )  ->  ( w  .o  v
)  =  ( b  .o  v ) )
2724, 26eqeq12d 2054 . . . . . . . . 9  |-  ( ( z  =  a  /\  w  =  b )  ->  ( ( z  .o  u )  =  ( w  .o  v )  <-> 
( a  .o  u
)  =  ( b  .o  v ) ) )
2822, 27anbi12d 442 . . . . . . . 8  |-  ( ( z  =  a  /\  w  =  b )  ->  ( ( ( f  =  <. z ,  w >.  /\  g  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) )  <-> 
( ( f  = 
<. a ,  b >.  /\  g  =  <. v ,  u >. )  /\  ( a  .o  u
)  =  ( b  .o  v ) ) ) )
29 opeq12 3551 . . . . . . . . . . 11  |-  ( ( v  =  c  /\  u  =  d )  -> 
<. v ,  u >.  = 
<. c ,  d >.
)
3029eqeq2d 2051 . . . . . . . . . 10  |-  ( ( v  =  c  /\  u  =  d )  ->  ( g  =  <. v ,  u >.  <->  g  =  <. c ,  d >.
) )
3130anbi2d 437 . . . . . . . . 9  |-  ( ( v  =  c  /\  u  =  d )  ->  ( ( f  = 
<. a ,  b >.  /\  g  =  <. v ,  u >. )  <->  ( f  =  <. a ,  b >.  /\  g  =  <. c ,  d
>. ) ) )
32 simpr 103 . . . . . . . . . . 11  |-  ( ( v  =  c  /\  u  =  d )  ->  u  =  d )
3332oveq2d 5528 . . . . . . . . . 10  |-  ( ( v  =  c  /\  u  =  d )  ->  ( a  .o  u
)  =  ( a  .o  d ) )
34 simpl 102 . . . . . . . . . . 11  |-  ( ( v  =  c  /\  u  =  d )  ->  v  =  c )
3534oveq2d 5528 . . . . . . . . . 10  |-  ( ( v  =  c  /\  u  =  d )  ->  ( b  .o  v
)  =  ( b  .o  c ) )
3633, 35eqeq12d 2054 . . . . . . . . 9  |-  ( ( v  =  c  /\  u  =  d )  ->  ( ( a  .o  u )  =  ( b  .o  v )  <-> 
( a  .o  d
)  =  ( b  .o  c ) ) )
3731, 36anbi12d 442 . . . . . . . 8  |-  ( ( v  =  c  /\  u  =  d )  ->  ( ( ( f  =  <. a ,  b
>.  /\  g  =  <. v ,  u >. )  /\  ( a  .o  u
)  =  ( b  .o  v ) )  <-> 
( ( f  = 
<. a ,  b >.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) ) )
3828, 37cbvex4v 1805 . . . . . . 7  |-  ( E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  g  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) )  <->  E. a E. b E. c E. d ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )
3938anbi2i 430 . . . . . 6  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( f  =  <. z ,  w >.  /\  g  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  E. a E. b E. c E. d ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) ) )
4019, 39sylib 127 . . . . 5  |-  ( f ~Q0  g  ->  ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. )
)  /\  E. a E. b E. c E. d ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) ) )
41 19.42vv 1788 . . . . 5  |-  ( E. a E. b ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  E. c E. d ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  <->  ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  E. a E. b E. c E. d ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) ) )
4240, 41sylibr 137 . . . 4  |-  ( f ~Q0  g  ->  E. a E. b
( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. )
)  /\  E. c E. d ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) ) )
43 19.42vv 1788 . . . . 5  |-  ( E. c E. d ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  <->  ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  E. c E. d ( ( f  =  <. a ,  b >.  /\  g  =  <. c ,  d
>. )  /\  (
a  .o  d )  =  ( b  .o  c ) ) ) )
44432exbii 1497 . . . 4  |-  ( E. a E. b E. c E. d ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  <->  E. a E. b
( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. )
)  /\  E. c E. d ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) ) )
4542, 44sylibr 137 . . 3  |-  ( f ~Q0  g  ->  E. a E. b E. c E. d ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) ) )
46 pm3.22 252 . . . . . . 7  |-  ( ( f  e.  ( om 
X.  N. )  /\  g  e.  ( om  X.  N. ) )  ->  (
g  e.  ( om 
X.  N. )  /\  f  e.  ( om  X.  N. ) ) )
4746adantr 261 . . . . . 6  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. )
) )
48 pm3.22 252 . . . . . . 7  |-  ( ( f  =  <. a ,  b >.  /\  g  =  <. c ,  d
>. )  ->  ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )
)
4948ad2antrl 459 . . . . . 6  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )
)
50 simprr 484 . . . . . . . 8  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  ( a  .o  d )  =  ( b  .o  c ) )
51 eleq1 2100 . . . . . . . . . . . . . 14  |-  ( f  =  <. a ,  b
>.  ->  ( f  e.  ( om  X.  N. ) 
<-> 
<. a ,  b >.  e.  ( om  X.  N. ) ) )
52 opelxp 4374 . . . . . . . . . . . . . 14  |-  ( <.
a ,  b >.  e.  ( om  X.  N. ) 
<->  ( a  e.  om  /\  b  e.  N. )
)
5351, 52syl6bb 185 . . . . . . . . . . . . 13  |-  ( f  =  <. a ,  b
>.  ->  ( f  e.  ( om  X.  N. ) 
<->  ( a  e.  om  /\  b  e.  N. )
) )
5453biimpcd 148 . . . . . . . . . . . 12  |-  ( f  e.  ( om  X.  N. )  ->  ( f  =  <. a ,  b
>.  ->  ( a  e. 
om  /\  b  e.  N. ) ) )
55 eleq1 2100 . . . . . . . . . . . . . 14  |-  ( g  =  <. c ,  d
>.  ->  ( g  e.  ( om  X.  N. ) 
<-> 
<. c ,  d >.  e.  ( om  X.  N. ) ) )
56 opelxp 4374 . . . . . . . . . . . . . 14  |-  ( <.
c ,  d >.  e.  ( om  X.  N. ) 
<->  ( c  e.  om  /\  d  e.  N. )
)
5755, 56syl6bb 185 . . . . . . . . . . . . 13  |-  ( g  =  <. c ,  d
>.  ->  ( g  e.  ( om  X.  N. ) 
<->  ( c  e.  om  /\  d  e.  N. )
) )
5857biimpcd 148 . . . . . . . . . . . 12  |-  ( g  e.  ( om  X.  N. )  ->  ( g  =  <. c ,  d
>.  ->  ( c  e. 
om  /\  d  e.  N. ) ) )
5954, 58im2anan9 530 . . . . . . . . . . 11  |-  ( ( f  e.  ( om 
X.  N. )  /\  g  e.  ( om  X.  N. ) )  ->  (
( f  =  <. a ,  b >.  /\  g  =  <. c ,  d
>. )  ->  ( ( a  e.  om  /\  b  e.  N. )  /\  ( c  e.  om  /\  d  e.  N. )
) ) )
6059imp 115 . . . . . . . . . 10  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( f  = 
<. a ,  b >.  /\  g  =  <. c ,  d >. )
)  ->  ( (
a  e.  om  /\  b  e.  N. )  /\  ( c  e.  om  /\  d  e.  N. )
) )
6160adantrr 448 . . . . . . . . 9  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  ( (
a  e.  om  /\  b  e.  N. )  /\  ( c  e.  om  /\  d  e.  N. )
) )
62 pinn 6407 . . . . . . . . . . . 12  |-  ( d  e.  N.  ->  d  e.  om )
63 nnmcom 6068 . . . . . . . . . . . 12  |-  ( ( a  e.  om  /\  d  e.  om )  ->  ( a  .o  d
)  =  ( d  .o  a ) )
6462, 63sylan2 270 . . . . . . . . . . 11  |-  ( ( a  e.  om  /\  d  e.  N. )  ->  ( a  .o  d
)  =  ( d  .o  a ) )
65 pinn 6407 . . . . . . . . . . . 12  |-  ( b  e.  N.  ->  b  e.  om )
66 nnmcom 6068 . . . . . . . . . . . 12  |-  ( ( b  e.  om  /\  c  e.  om )  ->  ( b  .o  c
)  =  ( c  .o  b ) )
6765, 66sylan 267 . . . . . . . . . . 11  |-  ( ( b  e.  N.  /\  c  e.  om )  ->  ( b  .o  c
)  =  ( c  .o  b ) )
6864, 67eqeqan12d 2055 . . . . . . . . . 10  |-  ( ( ( a  e.  om  /\  d  e.  N. )  /\  ( b  e.  N.  /\  c  e.  om )
)  ->  ( (
a  .o  d )  =  ( b  .o  c )  <->  ( d  .o  a )  =  ( c  .o  b ) ) )
6968an42s 523 . . . . . . . . 9  |-  ( ( ( a  e.  om  /\  b  e.  N. )  /\  ( c  e.  om  /\  d  e.  N. )
)  ->  ( (
a  .o  d )  =  ( b  .o  c )  <->  ( d  .o  a )  =  ( c  .o  b ) ) )
7061, 69syl 14 . . . . . . . 8  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  ( (
a  .o  d )  =  ( b  .o  c )  <->  ( d  .o  a )  =  ( c  .o  b ) ) )
7150, 70mpbid 135 . . . . . . 7  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  ( d  .o  a )  =  ( c  .o  b ) )
7271eqcomd 2045 . . . . . 6  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  ( c  .o  b )  =  ( d  .o  a ) )
7347, 49, 72jca32 293 . . . . 5  |-  ( ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  ( (
g  e.  ( om 
X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  (
( g  =  <. c ,  d >.  /\  f  =  <. a ,  b
>. )  /\  (
c  .o  b )  =  ( d  .o  a ) ) ) )
74732eximi 1492 . . . 4  |-  ( E. c E. d ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  E. c E. d ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  (
( g  =  <. c ,  d >.  /\  f  =  <. a ,  b
>. )  /\  (
c  .o  b )  =  ( d  .o  a ) ) ) )
75742eximi 1492 . . 3  |-  ( E. a E. b E. c E. d ( ( f  e.  ( om  X.  N. )  /\  g  e.  ( om  X.  N. ) )  /\  ( ( f  =  <. a ,  b
>.  /\  g  =  <. c ,  d >. )  /\  ( a  .o  d
)  =  ( b  .o  c ) ) )  ->  E. a E. b E. c E. d ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  (
( g  =  <. c ,  d >.  /\  f  =  <. a ,  b
>. )  /\  (
c  .o  b )  =  ( d  .o  a ) ) ) )
7645, 75syl 14 . 2  |-  ( f ~Q0  g  ->  E. a E. b E. c E. d ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) ) )
77 exrot4 1581 . . 3  |-  ( E. a E. b E. c E. d ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )  <->  E. c E. d E. a E. b ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) ) )
78 19.42vv 1788 . . . . 5  |-  ( E. a E. b ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )  <->  ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. a E. b ( ( g  =  <. c ,  d >.  /\  f  =  <. a ,  b
>. )  /\  (
c  .o  b )  =  ( d  .o  a ) ) ) )
79782exbii 1497 . . . 4  |-  ( E. c E. d E. a E. b ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )  <->  E. c E. d
( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. )
)  /\  E. a E. b ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) ) )
80 19.42vv 1788 . . . . 5  |-  ( E. c E. d ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. a E. b ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )  <->  ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. c E. d E. a E. b ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) ) )
81 opeq12 3551 . . . . . . . . . 10  |-  ( ( z  =  c  /\  w  =  d )  -> 
<. z ,  w >.  = 
<. c ,  d >.
)
8281eqeq2d 2051 . . . . . . . . 9  |-  ( ( z  =  c  /\  w  =  d )  ->  ( g  =  <. z ,  w >.  <->  g  =  <. c ,  d >.
) )
8382anbi1d 438 . . . . . . . 8  |-  ( ( z  =  c  /\  w  =  d )  ->  ( ( g  = 
<. z ,  w >.  /\  f  =  <. v ,  u >. )  <->  ( g  =  <. c ,  d
>.  /\  f  =  <. v ,  u >. )
) )
84 simpl 102 . . . . . . . . . 10  |-  ( ( z  =  c  /\  w  =  d )  ->  z  =  c )
8584oveq1d 5527 . . . . . . . . 9  |-  ( ( z  =  c  /\  w  =  d )  ->  ( z  .o  u
)  =  ( c  .o  u ) )
86 simpr 103 . . . . . . . . . 10  |-  ( ( z  =  c  /\  w  =  d )  ->  w  =  d )
8786oveq1d 5527 . . . . . . . . 9  |-  ( ( z  =  c  /\  w  =  d )  ->  ( w  .o  v
)  =  ( d  .o  v ) )
8885, 87eqeq12d 2054 . . . . . . . 8  |-  ( ( z  =  c  /\  w  =  d )  ->  ( ( z  .o  u )  =  ( w  .o  v )  <-> 
( c  .o  u
)  =  ( d  .o  v ) ) )
8983, 88anbi12d 442 . . . . . . 7  |-  ( ( z  =  c  /\  w  =  d )  ->  ( ( ( g  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) )  <-> 
( ( g  = 
<. c ,  d >.  /\  f  =  <. v ,  u >. )  /\  ( c  .o  u
)  =  ( d  .o  v ) ) ) )
90 opeq12 3551 . . . . . . . . . 10  |-  ( ( v  =  a  /\  u  =  b )  -> 
<. v ,  u >.  = 
<. a ,  b >.
)
9190eqeq2d 2051 . . . . . . . . 9  |-  ( ( v  =  a  /\  u  =  b )  ->  ( f  =  <. v ,  u >.  <->  f  =  <. a ,  b >.
) )
9291anbi2d 437 . . . . . . . 8  |-  ( ( v  =  a  /\  u  =  b )  ->  ( ( g  = 
<. c ,  d >.  /\  f  =  <. v ,  u >. )  <->  ( g  =  <. c ,  d >.  /\  f  =  <. a ,  b
>. ) ) )
93 simpr 103 . . . . . . . . . 10  |-  ( ( v  =  a  /\  u  =  b )  ->  u  =  b )
9493oveq2d 5528 . . . . . . . . 9  |-  ( ( v  =  a  /\  u  =  b )  ->  ( c  .o  u
)  =  ( c  .o  b ) )
95 simpl 102 . . . . . . . . . 10  |-  ( ( v  =  a  /\  u  =  b )  ->  v  =  a )
9695oveq2d 5528 . . . . . . . . 9  |-  ( ( v  =  a  /\  u  =  b )  ->  ( d  .o  v
)  =  ( d  .o  a ) )
9794, 96eqeq12d 2054 . . . . . . . 8  |-  ( ( v  =  a  /\  u  =  b )  ->  ( ( c  .o  u )  =  ( d  .o  v )  <-> 
( c  .o  b
)  =  ( d  .o  a ) ) )
9892, 97anbi12d 442 . . . . . . 7  |-  ( ( v  =  a  /\  u  =  b )  ->  ( ( ( g  =  <. c ,  d
>.  /\  f  =  <. v ,  u >. )  /\  ( c  .o  u
)  =  ( d  .o  v ) )  <-> 
( ( g  = 
<. c ,  d >.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) ) )
9989, 98cbvex4v 1805 . . . . . 6  |-  ( E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) )  <->  E. c E. d E. a E. b ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )
100 eleq1 2100 . . . . . . . . . 10  |-  ( x  =  g  ->  (
x  e.  ( om 
X.  N. )  <->  g  e.  ( om  X.  N. )
) )
101100anbi1d 438 . . . . . . . . 9  |-  ( x  =  g  ->  (
( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  <-> 
( g  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) ) ) )
102 eqeq1 2046 . . . . . . . . . . . 12  |-  ( x  =  g  ->  (
x  =  <. z ,  w >.  <->  g  =  <. z ,  w >. )
)
103102anbi1d 438 . . . . . . . . . . 11  |-  ( x  =  g  ->  (
( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  ( g  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. ) ) )
104103anbi1d 438 . . . . . . . . . 10  |-  ( x  =  g  ->  (
( ( x  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( w  .o  v ) )  <->  ( (
g  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) ) )
1051044exbidv 1750 . . . . . . . . 9  |-  ( x  =  g  ->  ( E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) )  <->  E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
106101, 105anbi12d 442 . . . . . . . 8  |-  ( x  =  g  ->  (
( ( x  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( g  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) ) )
107 eleq1 2100 . . . . . . . . . 10  |-  ( y  =  f  ->  (
y  e.  ( om 
X.  N. )  <->  f  e.  ( om  X.  N. )
) )
108107anbi2d 437 . . . . . . . . 9  |-  ( y  =  f  ->  (
( g  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. ) )  <-> 
( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) ) ) )
109 eqeq1 2046 . . . . . . . . . . . 12  |-  ( y  =  f  ->  (
y  =  <. v ,  u >.  <->  f  =  <. v ,  u >. )
)
110109anbi2d 437 . . . . . . . . . . 11  |-  ( y  =  f  ->  (
( g  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  <->  ( g  = 
<. z ,  w >.  /\  f  =  <. v ,  u >. ) ) )
111110anbi1d 438 . . . . . . . . . 10  |-  ( y  =  f  ->  (
( ( g  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
z  .o  u )  =  ( w  .o  v ) )  <->  ( (
g  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) ) ) )
1121114exbidv 1750 . . . . . . . . 9  |-  ( y  =  f  ->  ( E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u )  =  ( w  .o  v
) )  <->  E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
113108, 112anbi12d 442 . . . . . . . 8  |-  ( y  =  f  ->  (
( ( g  e.  ( om  X.  N. )  /\  y  e.  ( om  X.  N. )
)  /\  E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  <->  ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) ) )
1142, 1, 106, 113, 17brab 4009 . . . . . . 7  |-  ( g ~Q0  f  <->  ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) ) )
115114biimpri 124 . . . . . 6  |-  ( ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. z E. w E. v E. u ( ( g  =  <. z ,  w >.  /\  f  =  <. v ,  u >. )  /\  ( z  .o  u
)  =  ( w  .o  v ) ) )  ->  g ~Q0  f )
11699, 115sylan2br 272 . . . . 5  |-  ( ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. c E. d E. a E. b ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )  ->  g ~Q0  f )
11780, 116sylbi 114 . . . 4  |-  ( E. c E. d ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  E. a E. b ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )  ->  g ~Q0  f )
11879, 117sylbi 114 . . 3  |-  ( E. c E. d E. a E. b ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )  ->  g ~Q0  f )
11977, 118sylbi 114 . 2  |-  ( E. a E. b E. c E. d ( ( g  e.  ( om  X.  N. )  /\  f  e.  ( om  X.  N. ) )  /\  ( ( g  =  <. c ,  d
>.  /\  f  =  <. a ,  b >. )  /\  ( c  .o  b
)  =  ( d  .o  a ) ) )  ->  g ~Q0  f )
12076, 119syl 14 1  |-  ( f ~Q0  g  ->  g ~Q0  f )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98    = wceq 1243   E.wex 1381    e. wcel 1393   <.cop 3378   class class class wbr 3764   omcom 4313    X. cxp 4343  (class class class)co 5512    .o comu 5999   N.cnpi 6370   ~Q0 ceq0 6384
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-coll 3872  ax-sep 3875  ax-nul 3883  ax-pow 3927  ax-pr 3944  ax-un 4170  ax-setind 4262  ax-iinf 4311
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-fal 1249  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-reu 2313  df-rab 2315  df-v 2559  df-sbc 2765  df-csb 2853  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-nul 3225  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-int 3616  df-iun 3659  df-br 3765  df-opab 3819  df-mpt 3820  df-tr 3855  df-id 4030  df-iord 4103  df-on 4105  df-suc 4108  df-iom 4314  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fun 4904  df-fn 4905  df-f 4906  df-f1 4907  df-fo 4908  df-f1o 4909  df-fv 4910  df-ov 5515  df-oprab 5516  df-mpt2 5517  df-1st 5767  df-2nd 5768  df-recs 5920  df-irdg 5957  df-oadd 6005  df-omul 6006  df-ni 6402  df-enq0 6522
This theorem is referenced by:  enq0er  6533
  Copyright terms: Public domain W3C validator