ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvex4v Unicode version

Theorem cbvex4v 1805
Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 26-Jul-1995.)
Hypotheses
Ref Expression
cbvex4v.1  |-  ( ( x  =  v  /\  y  =  u )  ->  ( ph  <->  ps )
)
cbvex4v.2  |-  ( ( z  =  f  /\  w  =  g )  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
cbvex4v  |-  ( E. x E. y E. z E. w ph  <->  E. v E. u E. f E. g ch )
Distinct variable groups:    z, w, ch    v, u, ph    x, y, ps    f, g, ps    w, f    z, g    w, u, x, y, z, v
Allowed substitution hints:    ph( x, y, z, w, f, g)    ps( z, w, v, u)    ch( x, y, v, u, f, g)

Proof of Theorem cbvex4v
StepHypRef Expression
1 cbvex4v.1 . . . 4  |-  ( ( x  =  v  /\  y  =  u )  ->  ( ph  <->  ps )
)
212exbidv 1748 . . 3  |-  ( ( x  =  v  /\  y  =  u )  ->  ( E. z E. w ph  <->  E. z E. w ps ) )
32cbvex2v 1799 . 2  |-  ( E. x E. y E. z E. w ph  <->  E. v E. u E. z E. w ps )
4 cbvex4v.2 . . . 4  |-  ( ( z  =  f  /\  w  =  g )  ->  ( ps  <->  ch )
)
54cbvex2v 1799 . . 3  |-  ( E. z E. w ps  <->  E. f E. g ch )
652exbii 1497 . 2  |-  ( E. v E. u E. z E. w ps  <->  E. v E. u E. f E. g ch )
73, 6bitri 173 1  |-  ( E. x E. y E. z E. w ph  <->  E. v E. u E. f E. g ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    <-> wb 98   E.wex 1381
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427
This theorem depends on definitions:  df-bi 110  df-nf 1350
This theorem is referenced by:  enq0sym  6530  addnq0mo  6545  mulnq0mo  6546  addsrmo  6828  mulsrmo  6829
  Copyright terms: Public domain W3C validator