Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvex4v Unicode version

Theorem cbvex4v 1805
 Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 26-Jul-1995.)
Hypotheses
Ref Expression
cbvex4v.1
cbvex4v.2
Assertion
Ref Expression
cbvex4v
Distinct variable groups:   ,,   ,,   ,,   ,,   ,   ,   ,,,,,
Allowed substitution hints:   (,,,,,)   (,,,)   (,,,,,)

Proof of Theorem cbvex4v
StepHypRef Expression
1 cbvex4v.1 . . . 4
212exbidv 1748 . . 3
32cbvex2v 1799 . 2
4 cbvex4v.2 . . . 4
54cbvex2v 1799 . . 3
652exbii 1497 . 2
73, 6bitri 173 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 97   wb 98  wex 1381 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427 This theorem depends on definitions:  df-bi 110  df-nf 1350 This theorem is referenced by:  enq0sym  6530  addnq0mo  6545  mulnq0mo  6546  addsrmo  6828  mulsrmo  6829
 Copyright terms: Public domain W3C validator