Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvex4v | Unicode version |
Description: Rule used to change bound variables, using implicit substitition. (Contributed by NM, 26-Jul-1995.) |
Ref | Expression |
---|---|
cbvex4v.1 | |
cbvex4v.2 |
Ref | Expression |
---|---|
cbvex4v |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvex4v.1 | . . . 4 | |
2 | 1 | 2exbidv 1748 | . . 3 |
3 | 2 | cbvex2v 1799 | . 2 |
4 | cbvex4v.2 | . . . 4 | |
5 | 4 | cbvex2v 1799 | . . 3 |
6 | 5 | 2exbii 1497 | . 2 |
7 | 3, 6 | bitri 173 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wb 98 wex 1381 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-4 1400 ax-17 1419 ax-i9 1423 ax-ial 1427 |
This theorem depends on definitions: df-bi 110 df-nf 1350 |
This theorem is referenced by: enq0sym 6530 addnq0mo 6545 mulnq0mo 6546 addsrmo 6828 mulsrmo 6829 |
Copyright terms: Public domain | W3C validator |