ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvexdva Structured version   Unicode version

Theorem cbvexdva 1801
Description: Rule used to change the bound variable in an existential quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
cbvaldva.1
Assertion
Ref Expression
cbvexdva
Distinct variable groups:   ,   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem cbvexdva
StepHypRef Expression
1 nfv 1418 . 2  F/
2 nfvd 1419 . 2  F/
3 cbvaldva.1 . . 3
43ex 108 . 2
51, 2, 4cbvexd 1799 1
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97   wb 98  wex 1378
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424
This theorem depends on definitions:  df-bi 110  df-nf 1347
This theorem is referenced by:  cbvrexdva2  2532  acexmid  5454  tfrlemi1  5887  ltexpri  6587  recexpr  6610
  Copyright terms: Public domain W3C validator