ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprcl Structured version   Unicode version

Theorem oprcl 3564
Description: If an ordered pair has an element, then its arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
oprcl  C  <. ,  >.  _V  _V

Proof of Theorem oprcl
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex2 2564 . 2  C  <. ,  >.  <. ,  >.
2 df-op 3376 . . . . . . 7  <. ,  >.  {  |  _V  _V  { { } ,  { ,  } } }
32eleq2i 2101 . . . . . 6  <. ,  >.  {  |  _V  _V  { { } ,  { ,  } } }
4 df-clab 2024 . . . . . 6  {  |  _V  _V  { { } ,  { ,  } } }  _V  _V  { { } ,  { ,  } }
53, 4bitri 173 . . . . 5  <. ,  >.  _V  _V  { { } ,  { ,  } }
6 3simpa 900 . . . . . 6  _V  _V  { { } ,  { ,  } }  _V  _V
76sbimi 1644 . . . . 5  _V  _V 
{ { } ,  { ,  } }  _V  _V
85, 7sylbi 114 . . . 4  <. ,  >.  _V  _V
9 nfv 1418 . . . . 5  F/  _V  _V
109sbf 1657 . . . 4  _V  _V  _V  _V
118, 10sylib 127 . . 3  <. ,  >.  _V  _V
1211exlimiv 1486 . 2  <. ,  >.  _V  _V
131, 12syl 14 1  C  <. ,  >.  _V  _V
Colors of variables: wff set class
Syntax hints:   wi 4   wa 97   w3a 884  wex 1378   wcel 1390  wsb 1642   {cab 2023   _Vcvv 2551   {csn 3367   {cpr 3368   <.cop 3370
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-5 1333  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-4 1397  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-ext 2019
This theorem depends on definitions:  df-bi 110  df-3an 886  df-nf 1347  df-sb 1643  df-clab 2024  df-cleq 2030  df-clel 2033  df-v 2553  df-op 3376
This theorem is referenced by:  opth1  3964  opth  3965  0nelop  3976
  Copyright terms: Public domain W3C validator