Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-uniexg Unicode version

Theorem bj-uniexg 10038
 Description: uniexg 4175 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-uniexg

Proof of Theorem bj-uniexg
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 unieq 3589 . . 3
21eleq1d 2106 . 2
3 vex 2560 . . 3
43bj-uniex 10037 . 2
52, 4vtoclg 2613 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1243   wcel 1393  cvv 2557  cuni 3580 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-un 4170  ax-bd0 9933  ax-bdex 9939  ax-bdel 9941  ax-bdsb 9942  ax-bdsep 10004 This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-rex 2312  df-v 2559  df-uni 3581  df-bdc 9961 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator