ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfoprab3s Unicode version

Theorem dfoprab3s 5816
Description: A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfoprab3s  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph ) }
Distinct variable groups:    ph, w    x, y, z, w
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem dfoprab3s
StepHypRef Expression
1 dfoprab2 5552 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }
2 nfsbc1v 2782 . . . . 5  |-  F/ x [. ( 1st `  w
)  /  x ]. [. ( 2nd `  w
)  /  y ]. ph
3219.41 1576 . . . 4  |-  ( E. x ( E. y  w  =  <. x ,  y >.  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph )  <->  ( E. x E. y  w  = 
<. x ,  y >.  /\  [. ( 1st `  w
)  /  x ]. [. ( 2nd `  w
)  /  y ]. ph ) )
4 sbcopeq1a 5813 . . . . . . . 8  |-  ( w  =  <. x ,  y
>.  ->  ( [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph  <->  ph ) )
54pm5.32i 427 . . . . . . 7  |-  ( ( w  =  <. x ,  y >.  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph )  <->  ( w  =  <. x ,  y
>.  /\  ph ) )
65exbii 1496 . . . . . 6  |-  ( E. y ( w  = 
<. x ,  y >.  /\  [. ( 1st `  w
)  /  x ]. [. ( 2nd `  w
)  /  y ]. ph )  <->  E. y ( w  =  <. x ,  y
>.  /\  ph ) )
7 nfcv 2178 . . . . . . . 8  |-  F/_ y
( 1st `  w
)
8 nfsbc1v 2782 . . . . . . . 8  |-  F/ y
[. ( 2nd `  w
)  /  y ]. ph
97, 8nfsbc 2784 . . . . . . 7  |-  F/ y
[. ( 1st `  w
)  /  x ]. [. ( 2nd `  w
)  /  y ]. ph
10919.41 1576 . . . . . 6  |-  ( E. y ( w  = 
<. x ,  y >.  /\  [. ( 1st `  w
)  /  x ]. [. ( 2nd `  w
)  /  y ]. ph )  <->  ( E. y  w  =  <. x ,  y >.  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph ) )
116, 10bitr3i 175 . . . . 5  |-  ( E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  ( E. y  w  =  <. x ,  y >.  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph ) )
1211exbii 1496 . . . 4  |-  ( E. x E. y ( w  =  <. x ,  y >.  /\  ph ) 
<->  E. x ( E. y  w  =  <. x ,  y >.  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph ) )
13 elvv 4402 . . . . 5  |-  ( w  e.  ( _V  X.  _V )  <->  E. x E. y  w  =  <. x ,  y >. )
1413anbi1i 431 . . . 4  |-  ( ( w  e.  ( _V 
X.  _V )  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph )  <->  ( E. x E. y  w  = 
<. x ,  y >.  /\  [. ( 1st `  w
)  /  x ]. [. ( 2nd `  w
)  /  y ]. ph ) )
153, 12, 143bitr4i 201 . . 3  |-  ( E. x E. y ( w  =  <. x ,  y >.  /\  ph ) 
<->  ( w  e.  ( _V  X.  _V )  /\  [. ( 1st `  w
)  /  x ]. [. ( 2nd `  w
)  /  y ]. ph ) )
1615opabbii 3824 . 2  |-  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }  =  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph ) }
171, 16eqtri 2060 1  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  ( w  e.  ( _V 
X.  _V )  /\  [. ( 1st `  w )  /  x ]. [. ( 2nd `  w )  /  y ]. ph ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 97    = wceq 1243   E.wex 1381    e. wcel 1393   _Vcvv 2557   [.wsbc 2764   <.cop 3378   {copab 3817    X. cxp 4343   ` cfv 4902   {coprab 5513   1stc1st 5765   2ndc2nd 5766
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-13 1404  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944  ax-un 4170
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-sbc 2765  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-id 4030  df-xp 4351  df-rel 4352  df-cnv 4353  df-co 4354  df-dm 4355  df-rn 4356  df-iota 4867  df-fun 4904  df-fv 4910  df-oprab 5516  df-1st 5767  df-2nd 5768
This theorem is referenced by:  dfoprab3  5817
  Copyright terms: Public domain W3C validator