ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfoprab3s Unicode version

Theorem dfoprab3s 5758
Description: A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfoprab3s  { <. <. ,  >. ,  >.  |  }  { <. , 
>.  |  _V  X.  _V  [. 1st `  ].
[. 2nd `  ]. }
Distinct variable groups:   ,   ,,,
Allowed substitution hints:   (,,)

Proof of Theorem dfoprab3s
StepHypRef Expression
1 dfoprab2 5494 . 2  { <. <. ,  >. ,  >.  |  }  { <. , 
>.  | 
<. ,  >.  }
2 nfsbc1v 2776 . . . . 5  F/ [. 1st `  ]. [. 2nd `  ].
3219.41 1573 . . . 4  <. , 
>.  [. 1st `  ].
[. 2nd `  ].  <. ,  >.  [. 1st `  ].
[. 2nd `  ].
4 sbcopeq1a 5755 . . . . . . . 8  <. , 
>.  [. 1st `  ]. [. 2nd `  ].
54pm5.32i 427 . . . . . . 7  <. ,  >.  [. 1st `  ]. [. 2nd `  ].  <. , 
>.
65exbii 1493 . . . . . 6  <. ,  >.  [. 1st `  ]. [. 2nd `  ].  <. ,  >.
7 nfcv 2175 . . . . . . . 8  F/_ 1st `
8 nfsbc1v 2776 . . . . . . . 8  F/
[. 2nd `  ].
97, 8nfsbc 2778 . . . . . . 7  F/
[. 1st `  ]. [. 2nd `  ].
10919.41 1573 . . . . . 6  <. ,  >.  [. 1st `  ]. [. 2nd `  ].  <. ,  >.  [. 1st `  ]. [. 2nd `  ].
116, 10bitr3i 175 . . . . 5  <. ,  >.  <. , 
>.  [. 1st `  ].
[. 2nd `  ].
1211exbii 1493 . . . 4  <. , 
>. 
<. ,  >. 
[. 1st `  ]. [. 2nd `  ].
13 elvv 4345 . . . . 5  _V  X.  _V  <. ,  >.
1413anbi1i 431 . . . 4  _V 
X.  _V  [. 1st `  ]. [. 2nd `  ]. 
<. ,  >. 
[. 1st `  ]. [. 2nd `  ].
153, 12, 143bitr4i 201 . . 3  <. , 
>.  _V  X.  _V  [. 1st `  ]. [. 2nd `  ].
1615opabbii 3815 . 2  { <. ,  >.  |  <. , 
>.  }  { <. , 
>.  |  _V  X.  _V  [. 1st `  ].
[. 2nd `  ]. }
171, 16eqtri 2057 1  { <. <. ,  >. ,  >.  |  }  { <. , 
>.  |  _V  X.  _V  [. 1st `  ].
[. 2nd `  ]. }
Colors of variables: wff set class
Syntax hints:   wa 97   wceq 1242  wex 1378   wcel 1390   _Vcvv 2551   [.wsbc 2758   <.cop 3370   {copab 3808    X. cxp 4286   ` cfv 4845   {coprab 5456   1stc1st 5707   2ndc2nd 5708
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-sep 3866  ax-pow 3918  ax-pr 3935  ax-un 4136
This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ral 2305  df-rex 2306  df-v 2553  df-sbc 2759  df-un 2916  df-in 2918  df-ss 2925  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-br 3756  df-opab 3810  df-mpt 3811  df-id 4021  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-iota 4810  df-fun 4847  df-fv 4853  df-oprab 5459  df-1st 5709  df-2nd 5710
This theorem is referenced by:  dfoprab3  5759
  Copyright terms: Public domain W3C validator