ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnoprab Unicode version

Theorem rnoprab 5587
Description: The range of an operation class abstraction. (Contributed by NM, 30-Aug-2004.) (Revised by David Abernethy, 19-Apr-2013.)
Assertion
Ref Expression
rnoprab  |-  ran  { <. <. x ,  y
>. ,  z >.  | 
ph }  =  {
z  |  E. x E. y ph }
Distinct variable groups:    x, z    y,
z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem rnoprab
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dfoprab2 5552 . . 3  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }
21rneqi 4562 . 2  |-  ran  { <. <. x ,  y
>. ,  z >.  | 
ph }  =  ran  {
<. w ,  z >.  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }
3 rnopab 4581 . 2  |-  ran  { <. w ,  z >.  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }  =  {
z  |  E. w E. x E. y ( w  =  <. x ,  y >.  /\  ph ) }
4 exrot3 1580 . . . 4  |-  ( E. w E. x E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y E. w ( w  =  <. x ,  y >.  /\  ph ) )
5 vex 2560 . . . . . . . 8  |-  x  e. 
_V
6 vex 2560 . . . . . . . 8  |-  y  e. 
_V
75, 6opex 3966 . . . . . . 7  |-  <. x ,  y >.  e.  _V
87isseti 2563 . . . . . 6  |-  E. w  w  =  <. x ,  y >.
9 19.41v 1782 . . . . . 6  |-  ( E. w ( w  = 
<. x ,  y >.  /\  ph )  <->  ( E. w  w  =  <. x ,  y >.  /\  ph ) )
108, 9mpbiran 847 . . . . 5  |-  ( E. w ( w  = 
<. x ,  y >.  /\  ph )  <->  ph )
11102exbii 1497 . . . 4  |-  ( E. x E. y E. w ( w  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y ph )
124, 11bitri 173 . . 3  |-  ( E. w E. x E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y ph )
1312abbii 2153 . 2  |-  { z  |  E. w E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }  =  { z  |  E. x E. y ph }
142, 3, 133eqtri 2064 1  |-  ran  { <. <. x ,  y
>. ,  z >.  | 
ph }  =  {
z  |  E. x E. y ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 97    = wceq 1243   E.wex 1381   {cab 2026   <.cop 3378   {copab 3817   ran crn 4346   {coprab 5513
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-cnv 4353  df-dm 4355  df-rn 4356  df-oprab 5516
This theorem is referenced by:  rnoprab2  5588
  Copyright terms: Public domain W3C validator