ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnoprab GIF version

Theorem rnoprab 5587
Description: The range of an operation class abstraction. (Contributed by NM, 30-Aug-2004.) (Revised by David Abernethy, 19-Apr-2013.)
Assertion
Ref Expression
rnoprab ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦𝜑}
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem rnoprab
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 dfoprab2 5552 . . 3 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
21rneqi 4562 . 2 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = ran {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
3 rnopab 4581 . 2 ran {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑧 ∣ ∃𝑤𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
4 exrot3 1580 . . . 4 (∃𝑤𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
5 vex 2560 . . . . . . . 8 𝑥 ∈ V
6 vex 2560 . . . . . . . 8 𝑦 ∈ V
75, 6opex 3966 . . . . . . 7 𝑥, 𝑦⟩ ∈ V
87isseti 2563 . . . . . 6 𝑤 𝑤 = ⟨𝑥, 𝑦
9 19.41v 1782 . . . . . 6 (∃𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (∃𝑤 𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
108, 9mpbiran 847 . . . . 5 (∃𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜑)
11102exbii 1497 . . . 4 (∃𝑥𝑦𝑤(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝜑)
124, 11bitri 173 . . 3 (∃𝑤𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥𝑦𝜑)
1312abbii 2153 . 2 {𝑧 ∣ ∃𝑤𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑧 ∣ ∃𝑥𝑦𝜑}
142, 3, 133eqtri 2064 1 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦𝜑}
Colors of variables: wff set class
Syntax hints:  wa 97   = wceq 1243  wex 1381  {cab 2026  cop 3378  {copab 3817  ran crn 4346  {coprab 5513
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-cnv 4353  df-dm 4355  df-rn 4356  df-oprab 5516
This theorem is referenced by:  rnoprab2  5588
  Copyright terms: Public domain W3C validator