Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mptpreima | Unicode version |
Description: The preimage of a function in maps-to notation. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
dmmpt2.1 |
Ref | Expression |
---|---|
mptpreima |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmmpt2.1 | . . . . . 6 | |
2 | df-mpt 3820 | . . . . . 6 | |
3 | 1, 2 | eqtri 2060 | . . . . 5 |
4 | 3 | cnveqi 4510 | . . . 4 |
5 | cnvopab 4726 | . . . 4 | |
6 | 4, 5 | eqtri 2060 | . . 3 |
7 | 6 | imaeq1i 4665 | . 2 |
8 | df-ima 4358 | . . 3 | |
9 | resopab 4652 | . . . . 5 | |
10 | 9 | rneqi 4562 | . . . 4 |
11 | ancom 253 | . . . . . . . . 9 | |
12 | anass 381 | . . . . . . . . 9 | |
13 | 11, 12 | bitri 173 | . . . . . . . 8 |
14 | 13 | exbii 1496 | . . . . . . 7 |
15 | 19.42v 1786 | . . . . . . . 8 | |
16 | df-clel 2036 | . . . . . . . . . 10 | |
17 | 16 | bicomi 123 | . . . . . . . . 9 |
18 | 17 | anbi2i 430 | . . . . . . . 8 |
19 | 15, 18 | bitri 173 | . . . . . . 7 |
20 | 14, 19 | bitri 173 | . . . . . 6 |
21 | 20 | abbii 2153 | . . . . 5 |
22 | rnopab 4581 | . . . . 5 | |
23 | df-rab 2315 | . . . . 5 | |
24 | 21, 22, 23 | 3eqtr4i 2070 | . . . 4 |
25 | 10, 24 | eqtri 2060 | . . 3 |
26 | 8, 25 | eqtri 2060 | . 2 |
27 | 7, 26 | eqtri 2060 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 97 wceq 1243 wex 1381 wcel 1393 cab 2026 crab 2310 copab 3817 cmpt 3818 ccnv 4344 crn 4346 cres 4347 cima 4348 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-br 3765 df-opab 3819 df-mpt 3820 df-xp 4351 df-rel 4352 df-cnv 4353 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 |
This theorem is referenced by: mptiniseg 4815 dmmpt 4816 fmpt 5319 f1oresrab 5329 suppssfv 5708 suppssov1 5709 |
Copyright terms: Public domain | W3C validator |