ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suppssov1 Unicode version

Theorem suppssov1 5709
Description: Formula building theorem for support restrictions: operator with left annihilator. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
suppssov1.s  |-  ( ph  ->  ( `' ( x  e.  D  |->  A )
" ( _V  \  { Y } ) ) 
C_  L )
suppssov1.o  |-  ( (
ph  /\  v  e.  R )  ->  ( Y O v )  =  Z )
suppssov1.a  |-  ( (
ph  /\  x  e.  D )  ->  A  e.  V )
suppssov1.b  |-  ( (
ph  /\  x  e.  D )  ->  B  e.  R )
Assertion
Ref Expression
suppssov1  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( A O B ) )
" ( _V  \  { Z } ) ) 
C_  L )
Distinct variable groups:    ph, v    ph, x    v, B    v, O    v, R    v, Y    x, Y    v, Z    x, Z
Allowed substitution hints:    A( x, v)    B( x)    D( x, v)    R( x)    L( x, v)    O( x)    V( x, v)

Proof of Theorem suppssov1
StepHypRef Expression
1 suppssov1.a . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  A  e.  V )
2 elex 2566 . . . . . . . 8  |-  ( A  e.  V  ->  A  e.  _V )
31, 2syl 14 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  ->  A  e.  _V )
43adantr 261 . . . . . 6  |-  ( ( ( ph  /\  x  e.  D )  /\  ( A O B )  e.  ( _V  \  { Z } ) )  ->  A  e.  _V )
5 eldifsni 3496 . . . . . . . 8  |-  ( ( A O B )  e.  ( _V  \  { Z } )  -> 
( A O B )  =/=  Z )
6 suppssov1.b . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  D )  ->  B  e.  R )
7 suppssov1.o . . . . . . . . . . . . 13  |-  ( (
ph  /\  v  e.  R )  ->  ( Y O v )  =  Z )
87ralrimiva 2392 . . . . . . . . . . . 12  |-  ( ph  ->  A. v  e.  R  ( Y O v )  =  Z )
98adantr 261 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  D )  ->  A. v  e.  R  ( Y O v )  =  Z )
10 oveq2 5520 . . . . . . . . . . . . 13  |-  ( v  =  B  ->  ( Y O v )  =  ( Y O B ) )
1110eqeq1d 2048 . . . . . . . . . . . 12  |-  ( v  =  B  ->  (
( Y O v )  =  Z  <->  ( Y O B )  =  Z ) )
1211rspcva 2654 . . . . . . . . . . 11  |-  ( ( B  e.  R  /\  A. v  e.  R  ( Y O v )  =  Z )  -> 
( Y O B )  =  Z )
136, 9, 12syl2anc 391 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  D )  ->  ( Y O B )  =  Z )
14 oveq1 5519 . . . . . . . . . . 11  |-  ( A  =  Y  ->  ( A O B )  =  ( Y O B ) )
1514eqeq1d 2048 . . . . . . . . . 10  |-  ( A  =  Y  ->  (
( A O B )  =  Z  <->  ( Y O B )  =  Z ) )
1613, 15syl5ibrcom 146 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  D )  ->  ( A  =  Y  ->  ( A O B )  =  Z ) )
1716necon3d 2249 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  (
( A O B )  =/=  Z  ->  A  =/=  Y ) )
185, 17syl5 28 . . . . . . 7  |-  ( (
ph  /\  x  e.  D )  ->  (
( A O B )  e.  ( _V 
\  { Z }
)  ->  A  =/=  Y ) )
1918imp 115 . . . . . 6  |-  ( ( ( ph  /\  x  e.  D )  /\  ( A O B )  e.  ( _V  \  { Z } ) )  ->  A  =/=  Y )
20 eldifsn 3495 . . . . . 6  |-  ( A  e.  ( _V  \  { Y } )  <->  ( A  e.  _V  /\  A  =/= 
Y ) )
214, 19, 20sylanbrc 394 . . . . 5  |-  ( ( ( ph  /\  x  e.  D )  /\  ( A O B )  e.  ( _V  \  { Z } ) )  ->  A  e.  ( _V  \  { Y } ) )
2221ex 108 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  (
( A O B )  e.  ( _V 
\  { Z }
)  ->  A  e.  ( _V  \  { Y } ) ) )
2322ss2rabdv 3021 . . 3  |-  ( ph  ->  { x  e.  D  |  ( A O B )  e.  ( _V  \  { Z } ) }  C_  { x  e.  D  |  A  e.  ( _V  \  { Y } ) } )
24 eqid 2040 . . . 4  |-  ( x  e.  D  |->  ( A O B ) )  =  ( x  e.  D  |->  ( A O B ) )
2524mptpreima 4814 . . 3  |-  ( `' ( x  e.  D  |->  ( A O B ) ) " ( _V  \  { Z }
) )  =  {
x  e.  D  | 
( A O B )  e.  ( _V 
\  { Z }
) }
26 eqid 2040 . . . 4  |-  ( x  e.  D  |->  A )  =  ( x  e.  D  |->  A )
2726mptpreima 4814 . . 3  |-  ( `' ( x  e.  D  |->  A ) " ( _V  \  { Y }
) )  =  {
x  e.  D  |  A  e.  ( _V  \  { Y } ) }
2823, 25, 273sstr4g 2986 . 2  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( A O B ) )
" ( _V  \  { Z } ) ) 
C_  ( `' ( x  e.  D  |->  A ) " ( _V 
\  { Y }
) ) )
29 suppssov1.s . 2  |-  ( ph  ->  ( `' ( x  e.  D  |->  A )
" ( _V  \  { Y } ) ) 
C_  L )
3028, 29sstrd 2955 1  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( A O B ) )
" ( _V  \  { Z } ) ) 
C_  L )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 97    = wceq 1243    e. wcel 1393    =/= wne 2204   A.wral 2306   {crab 2310   _Vcvv 2557    \ cdif 2914    C_ wss 2917   {csn 3375    |-> cmpt 3818   `'ccnv 4344   "cima 4348  (class class class)co 5512
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ne 2206  df-ral 2311  df-rex 2312  df-rab 2315  df-v 2559  df-dif 2920  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-uni 3581  df-br 3765  df-opab 3819  df-mpt 3820  df-xp 4351  df-rel 4352  df-cnv 4353  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358  df-iota 4867  df-fv 4910  df-ov 5515
This theorem is referenced by:  suppssof1  5728
  Copyright terms: Public domain W3C validator