Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > suppssfv | Unicode version |
Description: Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.) |
Ref | Expression |
---|---|
suppssfv.a | |
suppssfv.f | |
suppssfv.v |
Ref | Expression |
---|---|
suppssfv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsni 3496 | . . . . 5 | |
2 | suppssfv.v | . . . . . . . . 9 | |
3 | elex 2566 | . . . . . . . . 9 | |
4 | 2, 3 | syl 14 | . . . . . . . 8 |
5 | 4 | adantr 261 | . . . . . . 7 |
6 | suppssfv.f | . . . . . . . . . . 11 | |
7 | fveq2 5178 | . . . . . . . . . . . 12 | |
8 | 7 | eqeq1d 2048 | . . . . . . . . . . 11 |
9 | 6, 8 | syl5ibrcom 146 | . . . . . . . . . 10 |
10 | 9 | necon3d 2249 | . . . . . . . . 9 |
11 | 10 | adantr 261 | . . . . . . . 8 |
12 | 11 | imp 115 | . . . . . . 7 |
13 | eldifsn 3495 | . . . . . . 7 | |
14 | 5, 12, 13 | sylanbrc 394 | . . . . . 6 |
15 | 14 | ex 108 | . . . . 5 |
16 | 1, 15 | syl5 28 | . . . 4 |
17 | 16 | ss2rabdv 3021 | . . 3 |
18 | eqid 2040 | . . . 4 | |
19 | 18 | mptpreima 4814 | . . 3 |
20 | eqid 2040 | . . . 4 | |
21 | 20 | mptpreima 4814 | . . 3 |
22 | 17, 19, 21 | 3sstr4g 2986 | . 2 |
23 | suppssfv.a | . 2 | |
24 | 22, 23 | sstrd 2955 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 97 wceq 1243 wcel 1393 wne 2204 crab 2310 cvv 2557 cdif 2914 wss 2917 csn 3375 cmpt 3818 ccnv 4344 cima 4348 cfv 4902 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-in1 544 ax-in2 545 ax-io 630 ax-5 1336 ax-7 1337 ax-gen 1338 ax-ie1 1382 ax-ie2 1383 ax-8 1395 ax-10 1396 ax-11 1397 ax-i12 1398 ax-bndl 1399 ax-4 1400 ax-14 1405 ax-17 1419 ax-i9 1423 ax-ial 1427 ax-i5r 1428 ax-ext 2022 ax-sep 3875 ax-pow 3927 ax-pr 3944 |
This theorem depends on definitions: df-bi 110 df-3an 887 df-tru 1246 df-nf 1350 df-sb 1646 df-eu 1903 df-mo 1904 df-clab 2027 df-cleq 2033 df-clel 2036 df-nfc 2167 df-ne 2206 df-ral 2311 df-rex 2312 df-rab 2315 df-v 2559 df-dif 2920 df-un 2922 df-in 2924 df-ss 2931 df-pw 3361 df-sn 3381 df-pr 3382 df-op 3384 df-uni 3581 df-br 3765 df-opab 3819 df-mpt 3820 df-xp 4351 df-rel 4352 df-cnv 4353 df-dm 4355 df-rn 4356 df-res 4357 df-ima 4358 df-iota 4867 df-fv 4910 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |