ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imainrect Unicode version

Theorem imainrect 4766
Description: Image of a relation restricted to a rectangular region. (Contributed by Stefan O'Rear, 19-Feb-2015.)
Assertion
Ref Expression
imainrect  |-  ( ( G  i^i  ( A  X.  B ) )
" Y )  =  ( ( G "
( Y  i^i  A
) )  i^i  B
)

Proof of Theorem imainrect
StepHypRef Expression
1 df-res 4357 . . 3  |-  ( ( G  i^i  ( A  X.  B ) )  |`  Y )  =  ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )
21rneqi 4562 . 2  |-  ran  (
( G  i^i  ( A  X.  B ) )  |`  Y )  =  ran  ( ( G  i^i  ( A  X.  B
) )  i^i  ( Y  X.  _V ) )
3 df-ima 4358 . 2  |-  ( ( G  i^i  ( A  X.  B ) )
" Y )  =  ran  ( ( G  i^i  ( A  X.  B ) )  |`  Y )
4 df-ima 4358 . . . . 5  |-  ( G
" ( Y  i^i  A ) )  =  ran  ( G  |`  ( Y  i^i  A ) )
5 df-res 4357 . . . . . 6  |-  ( G  |`  ( Y  i^i  A
) )  =  ( G  i^i  ( ( Y  i^i  A )  X.  _V ) )
65rneqi 4562 . . . . 5  |-  ran  ( G  |`  ( Y  i^i  A ) )  =  ran  ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)
74, 6eqtri 2060 . . . 4  |-  ( G
" ( Y  i^i  A ) )  =  ran  ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)
87ineq1i 3134 . . 3  |-  ( ( G " ( Y  i^i  A ) )  i^i  B )  =  ( ran  ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  i^i 
B )
9 cnvin 4731 . . . . . 6  |-  `' ( ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  ( _V  X.  B ) )  =  ( `' ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  i^i  `' ( _V  X.  B ) )
10 inxp 4470 . . . . . . . . . 10  |-  ( ( A  X.  _V )  i^i  ( _V  X.  B
) )  =  ( ( A  i^i  _V )  X.  ( _V  i^i  B ) )
11 inv1 3253 . . . . . . . . . . 11  |-  ( A  i^i  _V )  =  A
12 incom 3129 . . . . . . . . . . . 12  |-  ( _V 
i^i  B )  =  ( B  i^i  _V )
13 inv1 3253 . . . . . . . . . . . 12  |-  ( B  i^i  _V )  =  B
1412, 13eqtri 2060 . . . . . . . . . . 11  |-  ( _V 
i^i  B )  =  B
1511, 14xpeq12i 4367 . . . . . . . . . 10  |-  ( ( A  i^i  _V )  X.  ( _V  i^i  B
) )  =  ( A  X.  B )
1610, 15eqtr2i 2061 . . . . . . . . 9  |-  ( A  X.  B )  =  ( ( A  X.  _V )  i^i  ( _V  X.  B ) )
1716ineq2i 3135 . . . . . . . 8  |-  ( ( G  i^i  ( Y  X.  _V ) )  i^i  ( A  X.  B ) )  =  ( ( G  i^i  ( Y  X.  _V )
)  i^i  ( ( A  X.  _V )  i^i  ( _V  X.  B
) ) )
18 in32 3149 . . . . . . . 8  |-  ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )  =  ( ( G  i^i  ( Y  X.  _V ) )  i^i  ( A  X.  B ) )
19 xpindir 4472 . . . . . . . . . . . 12  |-  ( ( Y  i^i  A )  X.  _V )  =  ( ( Y  X.  _V )  i^i  ( A  X.  _V ) )
2019ineq2i 3135 . . . . . . . . . . 11  |-  ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  =  ( G  i^i  (
( Y  X.  _V )  i^i  ( A  X.  _V ) ) )
21 inass 3147 . . . . . . . . . . 11  |-  ( ( G  i^i  ( Y  X.  _V ) )  i^i  ( A  X.  _V ) )  =  ( G  i^i  ( ( Y  X.  _V )  i^i  ( A  X.  _V ) ) )
2220, 21eqtr4i 2063 . . . . . . . . . 10  |-  ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  =  ( ( G  i^i  ( Y  X.  _V )
)  i^i  ( A  X.  _V ) )
2322ineq1i 3134 . . . . . . . . 9  |-  ( ( G  i^i  ( ( Y  i^i  A )  X.  _V ) )  i^i  ( _V  X.  B ) )  =  ( ( ( G  i^i  ( Y  X.  _V ) )  i^i  ( A  X.  _V ) )  i^i  ( _V  X.  B ) )
24 inass 3147 . . . . . . . . 9  |-  ( ( ( G  i^i  ( Y  X.  _V ) )  i^i  ( A  X.  _V ) )  i^i  ( _V  X.  B ) )  =  ( ( G  i^i  ( Y  X.  _V ) )  i^i  (
( A  X.  _V )  i^i  ( _V  X.  B ) ) )
2523, 24eqtri 2060 . . . . . . . 8  |-  ( ( G  i^i  ( ( Y  i^i  A )  X.  _V ) )  i^i  ( _V  X.  B ) )  =  ( ( G  i^i  ( Y  X.  _V )
)  i^i  ( ( A  X.  _V )  i^i  ( _V  X.  B
) ) )
2617, 18, 253eqtr4i 2070 . . . . . . 7  |-  ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )  =  ( ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  ( _V  X.  B ) )
2726cnveqi 4510 . . . . . 6  |-  `' ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )  =  `' ( ( G  i^i  ( ( Y  i^i  A )  X.  _V )
)  i^i  ( _V  X.  B ) )
28 df-res 4357 . . . . . . 7  |-  ( `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  |`  B )  =  ( `' ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  i^i  ( B  X.  _V ) )
29 cnvxp 4742 . . . . . . . 8  |-  `' ( _V  X.  B )  =  ( B  X.  _V )
3029ineq2i 3135 . . . . . . 7  |-  ( `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  `' ( _V  X.  B ) )  =  ( `' ( G  i^i  ( ( Y  i^i  A )  X.  _V ) )  i^i  ( B  X.  _V ) )
3128, 30eqtr4i 2063 . . . . . 6  |-  ( `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  |`  B )  =  ( `' ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  i^i  `' ( _V  X.  B ) )
329, 27, 313eqtr4ri 2071 . . . . 5  |-  ( `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  |`  B )  =  `' ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )
3332dmeqi 4536 . . . 4  |-  dom  ( `' ( G  i^i  ( ( Y  i^i  A )  X.  _V )
)  |`  B )  =  dom  `' ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )
34 incom 3129 . . . . 5  |-  ( B  i^i  dom  `' ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) ) )  =  ( dom  `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  B )
35 dmres 4632 . . . . 5  |-  dom  ( `' ( G  i^i  ( ( Y  i^i  A )  X.  _V )
)  |`  B )  =  ( B  i^i  dom  `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
) )
36 df-rn 4356 . . . . . 6  |-  ran  ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )  =  dom  `' ( G  i^i  ( ( Y  i^i  A )  X. 
_V ) )
3736ineq1i 3134 . . . . 5  |-  ( ran  ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  B )  =  ( dom  `' ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  B )
3834, 35, 373eqtr4ri 2071 . . . 4  |-  ( ran  ( G  i^i  (
( Y  i^i  A
)  X.  _V )
)  i^i  B )  =  dom  ( `' ( G  i^i  ( ( Y  i^i  A )  X.  _V ) )  |`  B )
39 df-rn 4356 . . . 4  |-  ran  (
( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )  =  dom  `' ( ( G  i^i  ( A  X.  B
) )  i^i  ( Y  X.  _V ) )
4033, 38, 393eqtr4ri 2071 . . 3  |-  ran  (
( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )  =  ( ran  ( G  i^i  ( ( Y  i^i  A )  X.  _V )
)  i^i  B )
418, 40eqtr4i 2063 . 2  |-  ( ( G " ( Y  i^i  A ) )  i^i  B )  =  ran  ( ( G  i^i  ( A  X.  B ) )  i^i  ( Y  X.  _V ) )
422, 3, 413eqtr4i 2070 1  |-  ( ( G  i^i  ( A  X.  B ) )
" Y )  =  ( ( G "
( Y  i^i  A
) )  i^i  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1243   _Vcvv 2557    i^i cin 2916    X. cxp 4343   `'ccnv 4344   dom cdm 4345   ran crn 4346    |` cres 4347   "cima 4348
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-14 1405  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022  ax-sep 3875  ax-pow 3927  ax-pr 3944
This theorem depends on definitions:  df-bi 110  df-3an 887  df-tru 1246  df-nf 1350  df-sb 1646  df-eu 1903  df-mo 1904  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-ral 2311  df-rex 2312  df-v 2559  df-un 2922  df-in 2924  df-ss 2931  df-pw 3361  df-sn 3381  df-pr 3382  df-op 3384  df-br 3765  df-opab 3819  df-xp 4351  df-rel 4352  df-cnv 4353  df-dm 4355  df-rn 4356  df-res 4357  df-ima 4358
This theorem is referenced by:  ecinxp  6181
  Copyright terms: Public domain W3C validator