![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqtr2i | Unicode version |
Description: An equality transitivity inference. (Contributed by NM, 21-Feb-1995.) |
Ref | Expression |
---|---|
eqtr2i.1 |
![]() ![]() ![]() ![]() |
eqtr2i.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqtr2i |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr2i.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | eqtr2i.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1, 2 | eqtri 2060 |
. 2
![]() ![]() ![]() ![]() |
4 | 3 | eqcomi 2044 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1336 ax-gen 1338 ax-4 1400 ax-17 1419 ax-ext 2022 |
This theorem depends on definitions: df-bi 110 df-cleq 2033 |
This theorem is referenced by: 3eqtrri 2065 3eqtr2ri 2067 symdif1 3202 dfif3 3343 dfsn2 3389 prprc1 3478 ruv 4274 xpindi 4471 xpindir 4472 dmcnvcnv 4558 rncnvcnv 4559 imainrect 4766 dfrn4 4781 fcoi1 5070 foimacnv 5144 fsnunfv 5363 dfoprab3 5817 pitonnlem1 6921 ixi 7574 recexaplem2 7633 zeo 8343 num0h 8377 dec10p 8396 fseq1p1m1 8956 |
Copyright terms: Public domain | W3C validator |