ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resindir Unicode version

Theorem resindir 4628
Description: Class restriction distributes over intersection. (Contributed by NM, 18-Dec-2008.)
Assertion
Ref Expression
resindir  |-  ( ( A  i^i  B )  |`  C )  =  ( ( A  |`  C )  i^i  ( B  |`  C ) )

Proof of Theorem resindir
StepHypRef Expression
1 inindir 3155 . 2  |-  ( ( A  i^i  B )  i^i  ( C  X.  _V ) )  =  ( ( A  i^i  ( C  X.  _V ) )  i^i  ( B  i^i  ( C  X.  _V )
) )
2 df-res 4357 . 2  |-  ( ( A  i^i  B )  |`  C )  =  ( ( A  i^i  B
)  i^i  ( C  X.  _V ) )
3 df-res 4357 . . 3  |-  ( A  |`  C )  =  ( A  i^i  ( C  X.  _V ) )
4 df-res 4357 . . 3  |-  ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )
53, 4ineq12i 3136 . 2  |-  ( ( A  |`  C )  i^i  ( B  |`  C ) )  =  ( ( A  i^i  ( C  X.  _V ) )  i^i  ( B  i^i  ( C  X.  _V )
) )
61, 2, 53eqtr4i 2070 1  |-  ( ( A  i^i  B )  |`  C )  =  ( ( A  |`  C )  i^i  ( B  |`  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1243   _Vcvv 2557    i^i cin 2916    X. cxp 4343    |` cres 4347
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-7 1337  ax-gen 1338  ax-ie1 1382  ax-ie2 1383  ax-8 1395  ax-10 1396  ax-11 1397  ax-i12 1398  ax-bndl 1399  ax-4 1400  ax-17 1419  ax-i9 1423  ax-ial 1427  ax-i5r 1428  ax-ext 2022
This theorem depends on definitions:  df-bi 110  df-tru 1246  df-nf 1350  df-sb 1646  df-clab 2027  df-cleq 2033  df-clel 2036  df-nfc 2167  df-v 2559  df-in 2924  df-res 4357
This theorem is referenced by:  inimass  4740  fnreseql  5277
  Copyright terms: Public domain W3C validator